معرفی شرکت ها


MaCroDNA-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Accurate integration of single-cell DNA and RNA data for a deeper understanding of tumor heterogeneity
ویژگی مقدار
سیستم عامل OS Independent
نام فایل MaCroDNA-0.0.1
نام MaCroDNA
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mohammadamin Edrisi, Xiru Huang
ایمیل نویسنده mae6@rice.edu, xh29@rice.edu
آدرس صفحه اصلی https://github.com/xiru-huang/MaCroDNA
آدرس اینترنتی https://pypi.org/project/MaCroDNA/
مجوز -
# MaCroDNA By Mohammadamin Edrisi, Xiru Huang, Huw A. Ogilvie and Luay Nakhleh Department of Computer Science, Rice University ### Table of Contents [1. Introduction](#Introduction) [2. Citation](#Citation) [3. Installation](#Installation) [4. Usage](#Usage) [5. Contacts](#contacts) ### Introduction MaCroDNA (**Ma**tching **Cro**ss-**D**omain **N**ucleic **A**cids) is a correlation-based method to perform mapping between scRNA-seq gene expression and scDNA-seq copy number values. This repository contains the source code for MaCroDNA described in the paper "MaCroDNA: Accurate integration of single-cell DNA and RNA data for a deeper understanding of tumor heterogeneity". ### Citation ### Installation **Package Requirements** >Python >= 3.7 > >numpy > >pandas > >scipy > >math > > gurobipy Here, only gurobipy need to be installed manually before installing MaCroDNA. Other packages can be installed automatically while installing MaCroDNA **gurobipy Installation** First, Gurobi need to be installed. The academic license is free. The installation instructions for Gurobi are | OS | Instruction | |:--------|:------------| | Linux | [Gurobi Installation Guide: Linux](https://youtu.be/yNmeG6Wom1o) | | Windows | [Gurobi Installation Guide: Windows](https://youtu.be/fQVxuWOiPpI) | | macOS | [Gurobi Installation Guide: macOS](https://youtu.be/ZcL-NmckTxQ) | After the installation of Gurobi, gurobipy can be installed using **pip** `python -m pip install gurobipy` Other installation methods can be found [How do I install Gurobi for Python](https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python-) **MaCroDNA Installation** `pip install -i https://test.pypi.org/simple/ MaCroDNA==0.0.5 ` **Installation Test** After installing MaCroDNA, you can test the installation using the following code in python ```` $ python > from MaCroDNA import MaCroDNA > test_macrodna = MaCroDNA() > test_macrodna.tiny_test() ```` And the output should be like ```` ******Test DNA data is: cell1 cell2 cell3 cell4 gene g1 2 2 1 2 g2 2 2 1 2 g3 3 2 2 2 g4 1 2 2 2 g5 6 2 2 2 g6 2 2 3 6 ******Test RNA data is: cell1 cell2 cell3 cell4 gene g1 0 2 0 1 g2 0 2 0 1 g3 10 2 2 1 g4 0 2 2 1 g5 20 2 0 1 g6 0 2 5 20 g7 0 0 0 0 ******Clone id for each DNA cell is: clone cell 0 0 cell1 1 1 cell2 2 2 cell3 3 3 cell4 ********** Start Mapping RNA cells to DNA clones ********** After selecting the same genes in RNA and DNA number of cells in dna data 4 number of cells in rna data 4 number of genes in dna data 6 number of genes in rna data 6 [[ 0.95553309 0. 0.15877684 -0.29277002] [ 0. 0. 0. 0. ] [-0.34698896 0. 0.87447463 0.86824314] [-0.18650096 0. 0.7592566 1. ]] 1 0 MaCroDNA will be run for 1 steps the smallest set has 4 number of cells Set parameter Username Academic license - for non-commercial use only - expires 2023-04-18 Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (linux64) Thread count: 10 physical cores, 20 logical processors, using up to 20 threads Optimize a model with 9 rows, 16 columns and 48 nonzeros Model fingerprint: 0xbe36aead Variable types: 0 continuous, 16 integer (16 binary) Coefficient statistics: Matrix range [1e+00, 1e+00] Objective range [2e-01, 1e+00] Bounds range [1e+00, 1e+00] RHS range [1e+00, 4e+00] Found heuristic solution: objective 2.8300077 Presolve removed 9 rows and 16 columns Presolve time: 0.00s Presolve: All rows and columns removed Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units) Thread count was 1 (of 20 available processors) Solution count 1: 2.83001 Optimal solution found (tolerance 1.00e-04) Best objective 2.830007718086e+00, best bound 2.830007718086e+00, gap 0.0000% IsMIP: 1 Solved with MIPFocus: 0 The model has been optimized Obj: 2.83001 the number of associations in the correspondence matrix 4.0 ********** Finish Mapping Test Success ********** ```` For more complicated test, you can use `test_macrodna.py` under `test/` directory ### Usage **cell-to-cell mapping** For mapping RNA cells to DNA cells, the input should be two dataframes `dna_df` and `rna_df`. In these two dataframes, the row ids should be the genes and the column ids should be the cells. The genes on RNA data and those in DNA data can be different, because MaCroDNA can select the same genes from the data by itself. To get the cell-to-cell mapping ```` $ python > from MaCroDNA import MaCroDNA > macrodna = MaCroDNA(rna_df, dna_df) > cell2cell = macrodna.cell2cell_assignment() ```` The output `cell2cell` is also a dataframe. The index ids are the RNA cell ids. And it only has on column "predict_cell", which is the DNA cell assigned to the corresponding RNA cell. **cell-to-clone mapping** For mapping RNA cells to DNA clones, the input needs three dataframes `dna_df`, `rna_df` and `dna_label`. `dna_df` and `rna_df` are same as cell-to-cell mapping. `dna_label` has two columns "clone" and "cell", where "cell" is the DNA cells and "clone" is the corresponding clone id for that DNA cell. To get the cell-to-clone mapping ```` $ python > from MaCroDNA import MaCroDNA > macrodna = MaCroDNA(rna_df, dna_df, dna_label) > cell2clone = macrodna.cell2clone_assignment() ```` The output `cell2clone` is also a dataframe. The index ids are the RNA cell ids. It has two columns. One is "predict_cell", which is the corresponding DNA cell for that RNA cell. The other column is "predict_clone", which is the predict clone id for that RNA cell. ### Contacts If you have any questions, please contact us via edrisi@rice.edu or xiru.huang@rice.edu


نیازمندی

مقدار نام
- numpy
- pandas
- scipy


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl MaCroDNA-0.0.1:

    pip install MaCroDNA-0.0.1.whl


نصب پکیج tar.gz MaCroDNA-0.0.1:

    pip install MaCroDNA-0.0.1.tar.gz