معرفی شرکت ها


LFPykernels-0.1rc8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Causal spike-signal impulse response functions for finite-sized neuronal network models
ویژگی مقدار
سیستم عامل OS Independent
نام فایل LFPykernels-0.1rc8
نام LFPykernels
نسخه کتابخانه 0.1rc8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده LFPy-team
ایمیل نویسنده lfpy@users.noreply.github.com
آدرس صفحه اصلی https://github.com/LFPy/LFPykernels
آدرس اینترنتی https://pypi.org/project/LFPykernels/
مجوز -
# LFPykernels The ``LFPykernels`` package incorporates forward-model based calculations of causal spike-signal impulse response functions for finite-sized neuronal network models. ## Build Status [![DOI](https://zenodo.org/badge/424143558.svg)](https://zenodo.org/badge/latestdoi/424143558) [![Coverage Status](https://coveralls.io/repos/github/LFPy/LFPykernels/badge.svg?branch=main)](https://coveralls.io/github/LFPy/LFPykernels?branch=main) [![Documentation Status](https://readthedocs.org/projects/lfpykernels/badge/?version=latest)](https://lfpykernels.readthedocs.io/en/latest/?badge=latest) [![flake8 lint](https://github.com/LFPy/LFPykernels/actions/workflows/flake8.yml/badge.svg)](https://github.com/LFPy/LFPykernels/actions/workflows/flake8.yml) [![Python application](https://github.com/LFPy/LFPykernels/workflows/Python%20application/badge.svg)](https://github.com/LFPy/LFPykernels/actions?query=workflow%3A%22Python+application%22) [![Upload Python Package](https://github.com/LFPy/LFPykernels/workflows/Upload%20Python%20Package/badge.svg)](https://pypi.org/project/LFPykernels) [![License](http://img.shields.io/:license-GPLv3+-green.svg)](http://www.gnu.org/licenses/gpl-3.0.html) ## Citation These codes correspond to results shown in the peer-reviewed manuscript: Hagen E, Magnusson SH, Ness TV, Halnes G, Babu PN, et al. (2022) Brain signal predictions from multi-scale networks using a linearized framework. PLOS Computational Biology 18(8): e1010353. <https://doi.org/10.1371/journal.pcbi.1010353> Bibtex format: @article{10.1371/journal.pcbi.1010353, doi = {10.1371/journal.pcbi.1010353}, author = {Hagen, Espen AND Magnusson, Steinn H. AND Ness, Torbjørn V. AND Halnes, Geir AND Babu, Pooja N. AND Linssen, Charl AND Morrison, Abigail AND Einevoll, Gaute T.}, journal = {PLOS Computational Biology}, publisher = {Public Library of Science}, title = {Brain signal predictions from multi-scale networks using a linearized framework}, year = {2022}, month = {08}, volume = {18}, url = {https://doi.org/10.1371/journal.pcbi.1010353}, pages = {1-51}, number = {8}, } If you use this software, please cite it as (change `<version>/<git-SHA>/<git-tag>` accordingly): Hagen, Espen. (2021). LFPykernels (<version>/<git-SHA>/<git-tag>). Zenodo. https://doi.org/10.5281/zenodo.5720619 BibTex format: @software{hagen_espen_2021_5720619, author = {Hagen, Espen}, title = {LFPykernels}, month = nov, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {<version>/<git-SHA>/<git-tag>}, doi = {10.5281/zenodo.5720619}, url = {https://doi.org/10.5281/zenodo.5720619} } If you use or refer to this work, please cite it as above. Adaptations or modifications of this work should comply with the provided `LICENSE` file provided with this repository. ## Features The ``LFPykernels`` package incorporates forward-model based calculations of causal spike-signal impulse response functions for finite-sized neuronal network models. The signals considered are low-frequency extracellular potentials ("local field potential" - LFP) or current dipole moments (and by extension EEG and MEG like signals) that are thought to mainly stem from synaptic currents and associated return currents. The basic idea is that the effect of any spike event in each presynaptic population on each signal type can be captured by single linearised multicompartment neuron models representative of each population and simultaneously accounting for known distributions of cells and synapses in space, distributions of delays, synaptic currents and associated return currents. The present methodology is described in detail by [Hagen E et al., 2022](https://doi.org/10.1371/journal.pcbi.1010353). The intended use for filter kernels predicted using ``LFPykernels`` is forward-model based signal predictions from neuronal network simulation frameworks using simplified neuron representations like leaky integrate-and-fire point neurons or rate-based neurons, but can also be used with biophysically detailed network models. Let `$\nu_X(t)$` describe presynaptic population spike rates in units of spikes/dt and `$H_{YX}(\mathbf{R}, \tau)$` predicted spike-signal kernels for the connections between presynaptic populations `$X$` and postsynaptic populations `$Y$` the full signal may then be computed via the sum over linear convolutions: ``` math V(\mathbf{R}, t) = \sum_X \sum_Y (\nu_X \ast H_{YX})(\mathbf{R}, t) ``` A more elaborate example combining kernel predictions with a spiking point-neuron network simulation is provided in the example notebook <https://github.com/LFPy/LFPykernels/blob/main/examples/LIF_net_forward_model_predictions.ipynb> For questions, please raise an issue at <https://github.com/LFPy/LFPykernels/issues>. ## Usage Example prediction of kernel function `$H(\mathbf{R},\tau)$` mapping spike events of a presynaptic inhibitory population `$X==\mathrm{I}$` to extracellular potential contributions by a postsynaptic excitatory population `$Y==\mathrm{E}$` (see <https://github.com/LFPy/LFPykernels/blob/main/examples/README_example.ipynb>): import matplotlib.pyplot as plt import scipy.stats as st import numpy as np from lfpykernels import GaussCylinderPotential, KernelApprox import neuron # recompile mod files if needed mech_loaded = neuron.load_mechanisms('mod') if not mech_loaded: os.system('cd mod && nrnivmodl && cd -') mech_loaded = neuron.load_mechanisms('mod') print(f'mechanisms loaded: {mech_loaded}') # misc parameters dt = 2**-4 # time resolution (ms) t_X = 500 # time of synaptic activations (ms) tau = 50 # duration of impulse response function after onset (ms) Vrest = -65 # assumed average postsynaptic potential (mV) X=['E', 'I'] # presynaptic population names N_X = np.array([8192, 1024]) # presynpatic population sizes Y = 'E' # postsynaptic population N_Y = 8192 # postsynaptic population size C_YX = np.array([0.05, 0.05]) # pairwise connection probability between populations X and Y nu_X = {'E': 2.5, 'I': 5.0} # assumed spike rates of each population (spikes/s) g_eff = True # account for changes in passive leak due to persistent synaptic activations def set_passive(cell, Vrest): """Insert passive leak channel across all sections Parameters ---------- cell: object LFPy.NetworkCell like object Vrest: float Steady state potential """ for sec in cell.template.all: sec.insert('pas') sec.g_pas = 0.0003 # (S/cm2) sec.e_pas = Vrest # (mV) # parameters for LFPy.NetworkCell representative of postsynaptic population cellParameters={ 'templatefile': 'BallAndSticksTemplate.hoc', 'templatename': 'BallAndSticksTemplate', 'custom_fun': [set_passive], 'custom_fun_args': [{'Vrest': Vrest}], 'templateargs': None, 'delete_sections': False, 'morphology': 'BallAndSticks_E.hoc'} populationParameters={ 'radius': 150.0, # population radius (µm) 'loc': 0.0, # average depth of cell bodies (µm) 'scale': 75.0} # standard deviation (µm) # Predictor for extracellular potentials across depth assuming planar disk source # elements convolved with Gaussian along z-axis. # See https://lfpykernels.readthedocs.io/en/latest/#class-gausscylinderpotential for details probe = GaussCylinderPotential( cell=None, z=np.linspace(1000., -200., 13), # depth of contacts (µm) sigma=0.3, # tissue conductivity (S/m) R=populationParameters['radius'], # sigma_z=populationParameters['scale'], ) # Create KernelApprox object. See https://lfpykernels.readthedocs.io/en/latest/#class-kernelapprox for details kernel = KernelApprox( X=X, Y=Y, N_X=N_X, N_Y=N_Y, C_YX=C_YX, cellParameters=cellParameters, populationParameters=populationParameters, # function and parameters used to estimate average multapse count: multapseFunction=st.truncnorm, multapseParameters=[ {'a': (1 - 2.) / .6, 'b': (10 - 2.) / .6, 'loc': 2.0, 'scale': 0.6}, {'a': (1 - 5.) / 1.1, 'b': (10 - 5.) / 1.1, 'loc': 5.0, 'scale': 1.1}], # function and parameters for delay distribution from connections between a # population in X onto population Y: delayFunction=st.truncnorm, delayParameters=[{'a': -2.2, 'b': np.inf, 'loc': 1.3, 'scale': 0.5}, {'a': -1.5, 'b': np.inf, 'loc': 1.2, 'scale': 0.6}], # parameters for synapses from connections by populations X onto Y synapseParameters=[ {'weight': 0.00012, 'syntype': 'Exp2Syn', 'tau1': 0.2, 'tau2': 1.8, 'e': 0.0}, {'weight': 0.002, 'syntype': 'Exp2Syn', 'tau1': 0.1, 'tau2': 9.0, 'e': -80.0}], # parameters for spatial synaptic connectivity by populations X onto Y synapsePositionArguments=[ {'section': ['apic', 'dend'], 'fun': [st.norm], 'funargs': [{'loc': 50.0, 'scale': 100.0}], 'funweights': [1.0]}, {'section': ['soma', 'apic', 'dend'], 'fun': [st.norm], 'funargs': [{'loc': -100.0, 'scale': 100.0}], 'funweights': [1.0]}], # parameters for extrinsic synaptic input extSynapseParameters={'syntype': 'Exp2Syn', 'weight': 0.0002, 'tau1': 0.2, 'tau2': 1.8, 'e': 0.0}, nu_ext=40., # external activation rate (spikes/s) n_ext=450, # number of extrinsic synapses nu_X=nu_X, ) # make kernel predictions for connection from populations X='I' onto Y='E' H = kernel.get_kernel( probes=[probe], Vrest=Vrest, dt=dt, X='I', t_X=t_X, tau=tau, g_eff=g_eff) ## Physical units Notes on physical units used in `LFPykernels`: - There are no explicit checks for physical units - Transmembrane currents are assumed to be in units of (nA) - Spatial information is assumed to be in units of (µm) - Voltages are assumed to be in units of (mV) - Extracellular conductivities are assumed to be in units of (S/m) - current dipole moments are assumed to be in units of (nA µm) - Magnetic fields are assumed to be in units of (nA/µm) - Simulation times are assumed to be in units of (ms) with step size ∆t - Spike rates are assumed to be in units of (# spikes / ∆t) ## Documentation The online Documentation of `LFPykernels` can be found here: <https://lfpykernels.readthedocs.io/en/latest> ## Dependencies `LFPykernels` is implemented in Python and is written (and continuously tested) for `Python >= 3.7` (older versions may or may not work). The main `LFPykernels` module depends on ``LFPy`` (<https://github.com/LFPy/LFPy>, <https://LFPy.readthedocs.io>). Running all unit tests and example files may in addition require `py.test`, `matplotlib`, `LFPy`. ## Installation ### From development sources (<https://github.com/LFPy/LFPykernels>) Install the current development version on <https://GitHub.com> using `git` (<https://git-scm.com>): git clone https://github.com/LFPy/LFPykernels.git cd LFPykernels python setup.py install # --user optional or using `pip`: pip install . # --user optional For active development, link the repository location pip install -e . # --user optional ### Installation of stable releases on PyPI.org (<https://www.pypi.org>) Installing stable releases from the Python Package Index (<https://www.pypi.org/project/lfpykernels>): pip install lfpykernels # --user optional To upgrade the installation using pip: pip install --upgrade --no-deps lfpykernels ## Docker We provide a Docker (<https://www.docker.com>) container recipe file with LFPykernels etc. To get started, install Docker and issue either: # build Dockerfile from GitHub docker build -t lfpykernels https://raw.githubusercontent.com/LFPy/LFPykernels/main/Dockerfile docker run -it -p 5000:5000 lfpykernels or # build local Dockerfile (obtained by cloning repo, checkout branch etc.) docker build -t lfpykernels - < Dockerfile docker run -it -p 5000:5000 lfpykernels If the docker file should fail for some reason it is possible to store the build log and avoid build caches by issuing docker build --no-cache --progress=plain -t lfpykernels - < Dockerfile 2>&1 | tee lfpykernels.log For successful builds, the ``--mount`` option can be used to mount a folder on the host to a target folder as: docker run --mount type=bind,source="$(pwd)",target=/opt/data -it -p 5000:5000 lfpykernels which mounts the present working dirctory (``$(pwd)``) to the ``/opt/data`` directory of the container. Try mounting the ``LFPykernels`` source directory for example (by setting ``source="<path-to-LFPykernels>"``). Various example files can then be found in the folder ``/opt/data/examples/`` when the container is running. Jupyter notebook servers running from within the container can be accessed after invoking them by issuing: cd /opt/data/examples/ jupyter-notebook --ip 0.0.0.0 --port=5000 --no-browser --allow-root and opening the resulting URL in a browser on the host computer, similar to: <http://127.0.0.1:5000/?token=dcf8f859f859740fc858c568bdd5b015e0cf15bfc2c5b0c1> ## Acknowledgements This work was supported by the European Union Horizon 2020 Research and Innovation Programme under Grant Agreement No. 785907 and No. 945539 Human Brain Project (HBP) SGA2 and SGA3. We also acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European Union’s Horizon 2020 Research and Innovation Programme through the ICEI Project under the Grant Agreement No. 800858; The Helmholtz Alliance through the Initiative and Networking Fund of the Helmholtz Association and the Helmholtz Portfolio theme Supercomputing and Modeling for the Human Brain; and The Excellence Strategy of the Federal Government and the La¨nder [G:(DE-82)EXS-PF-JARA-SDS005, G: (DE-82)EXS-SF-neuroIC002].


نیازمندی

مقدار نام
>=2.2.4 LFPy
- sphinx
- numpydoc
- sphinx-rtd-theme
- recommonmark
- pytest


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl LFPykernels-0.1rc8:

    pip install LFPykernels-0.1rc8.whl


نصب پکیج tar.gz LFPykernels-0.1rc8:

    pip install LFPykernels-0.1rc8.tar.gz