معرفی شرکت ها


L0-Smoothing-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Implementation of 《Image Smoothing via L0 Gradient Minimization》
ویژگی مقدار
سیستم عامل OS Independent
نام فایل L0-Smoothing-0.1.3
نام L0-Smoothing
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nrupatunga(normal), TsXor(pyocl)
ایمیل نویسنده nrupatunga.s@byjus.com, zhang050525@qq.com
آدرس صفحه اصلی https://github.com/TsXor/L0-Smoothing
آدرس اینترنتی https://pypi.org/project/L0-Smoothing/
مجوز MIT
<!-- PROJECT LOGO --> <p align="center"> <h3 align="center">Image Smoothing via L0 Gradient Minimization</h3> <p align="center"> <br /> <a href="http://www.nthere.in/2020/06/15/Image-Smoothing-using-L0-Gradient-Minimization/">Blog Post</a> | <a href="https://github.com/nrupatunga/L0-Smoothing/issues">Report Bug on Numpy Version</a> | <a href="https://github.com/TsXor/L0-Smoothing/issues">Report Bug on PyOpenCL Version</a> <br /> </p> </p> <!-- TABLE OF CONTENTS --> ## Table of Contents * [About the Project](#about-the-project) * [Getting Started](#getting-started) - [Installation](#installation) - [Install from pypi](#install-from-pypi) - [Setup with source code](#setup-with-source-code) - [Usage](#usage) - [Import in your script](#import-in-your-script) - [Execute from terminal](#execute-from-terminal) * [Maybe FAQ](#maybe-faq) <!--ABOUT THE PROJECT--> ## About the Project This repository is the Python implementation of the paper: [Image Smoothing via L0 Gradient Minimization](http://www.cse.cuhk.edu.hk/~leojia/papers/L0smooth_Siggraph_Asia2011.pdf) |Flower | |-----------| |![](https://github.com/nrupatunga/L0-Smoothing/blob/master/src/output/flower.png) | | Rock |-------------| |![](https://github.com/nrupatunga/L0-Smoothing/blob/master/src/output/rock2.png) | <!--GETTING STARTED--> ## Getting Started <!--INSTALLATION--> ### Installation <!--INSTALL FROM PYPI--> #### Install from pypi ```bash pip install L0-Smoothing ``` <!--SETUP WITH SOURCE CODE--> #### Setup with source code ```bash # Clone the repository git clone https://github.com/TsXor/L0-Smoothing.git # build package # build.bat is batch script for Windows cmd, and will not work on linux. # build.bat consist of mostly commands to move files, so it is easy to be rewritten into a bash script. # However, I don't have a linux machine available now, hope someone can write one and open a PR. cd builder ./build.bat # install via pip cd dist pip install L0_Smoothing-*-py3-none-any.whl ``` <!--USAGE--> ### Usage <!--IMPORT IN YOUR SCRIPT--> #### Import in your script ```python from L0_Smoothing import L0_Smoothing, L0_Smoothing_accel # It is not recommended to use cv2.imread because it easily throws error # just because you are missing some unimportant parameters and cannot # read image from path with Chinese (and maybe other non-ascii) characters. # Just read it with PIL and convert it to numpy array! # Note that you need to convert image to BGR with cv2.cvtColor if you read with PIL. import numpy as np from PIL import Image img = np.asarray(Image.open(r'/path/to/your/image')) # Parameters: # L0_Smoothing(img, asHSV=False, lambda_=2e-2, kappa=2.0, beta_max=1e5, mode='pyvkfft') # L0_Smoothing_accel(img, asHSV=False, lambda_=2e-2, kappa=2.0, beta_max=1e5) # img: numpy array of the image to be smoothed # asHSV: This module does operation per channel, and you can choose to convert it to HSV # while operating by giving parameter asHSV=True. # lambda_, kappa, beta_max: read the paper # mode: the OpenCL FFT backend to use smoothed = L0_Smoothing_accel(img) ``` If you are programming with `pyopencl`, you can use this module like this: ```python import pyopencl as cl import numpy as np import pyopencl.array as clArray from L0_Smoothing import L0_Smoothing_CL ctx = cl.create_some_context(interactive=False) queue = cl.CommandQueue(ctx) img = np.asarray(Image.open(r'/path/to/your/image')) S = clArray.to_device(queue, img/255) S_smoothed = L0_Smoothing_CL(S) img = S.get()*255 img = np.clip(img, 0, 255).astype(np.uint8) ``` Hint: You can try to apply blur before doing smoothing if the smoothing effect is not ideal. <!--EXECUTE FROM TERMINAL--> #### Execute from terminal Notes: - It support only jpg and png images now. - Input and output path should be both file or both folder. - You can give lambda_, kappa, beta_max via `--params`. - You can choose to use slower numpy version with switch `--noaccel`. - If you give `show` for output path, processed image with not be saved but showed. ```bash # get some help L0-Smoothing --help # process single image and save it somewhere L0-Smoothing /path/to/your/image /path/you/want/to/save # process all images in a folder and save it somewhere L0-Smoothing /path/to/your/image/folder /path/you/want/to/save ``` <!--MAYBE FAQ--> ## Maybe FAQ - When I use its command from terminal, it throws error! Try adding switch `--noaccel` to use slower numpy version. - pip throws errors (on compiling) when I am installing pyvkfft! Download pyvkfft package bundled with OpenCL SDK from release and install it with pip. Or just download binary package from release and install it. - Binary packages have problem on my machine. Use `reikna` as fft backend, it is pure python.


نیازمندی

مقدار نام
- numpy
- opencv-python
- pyopencl
- pyvkfft


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl L0-Smoothing-0.1.3:

    pip install L0-Smoothing-0.1.3.whl


نصب پکیج tar.gz L0-Smoothing-0.1.3:

    pip install L0-Smoothing-0.1.3.tar.gz