معرفی شرکت ها


KnowYourPlates-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Module that allows to recognize license plates from images basing on image processing algorithms.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل KnowYourPlates-0.1.1
نام KnowYourPlates
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Wojciech Sikora
ایمیل نویسنده kontakt@sikorawojciech.pl
آدرس صفحه اصلی https://github.com/SikoraWojciech/KnowYourPlates
آدرس اینترنتی https://pypi.org/project/KnowYourPlates/
مجوز -
# KnowYourPlates Module that allows to recognize license plates from images basing on image processing algorithms. ## Getting started ### Requirements Module uses several python packages: * OpenCV - open source computer vision and machine learning software library * pytesseract - optical character recognition (OCR) tool for python * NumPy - fundamental package for scientific computing with Python * imutils - series of convenience functions to make basic image processing functions * Pillow - Python Image Library * Matplotlib - Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms Be sure to have them installed before using **know_your_plates** package: ``` pip install opencv-contrib-python pip install pytesseract pip install numpy pip install imutils pip install Pillow pip install matplotlib ``` ### Installation Install this package with python package installer **pip**: ``` pip install know_your_plates ``` ### Usage To recognize license plate from the image, import this package to the project and use **license_plate_recognition** function with path to the image as an argument. Example code: ```python # run.py import argparse from know_your_plates import alpr ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="Path to the image") args = vars(ap.parse_args()) recognized_text = alpr.license_plate_recognition(args['image']) print(recognized_text) ``` Call from the command line: ``` python run.py --image ./example.jpg ``` ## API - **license_plate_recognition(img_path: str, new_size: tuple, blurring_method: Callable, binarization_method: Callable)):** ``` Automatic license plate recognition algorithm. Found license plate is stored in ./results/ directiory as license_plate.jpg Parameters ---------- img_path : str Path to the image new_size : tuple of integers First argument of the tuple is new width, second is the new height of the image blurring_method : function Function as an object. Suggested functions from this module: gaussian_blur, median_blur, bilateral_filter binarization_method : function Function as an object. Suggested functions from this module: threshold_otsu, adaptive_threshold, canny, auto_canny Returns ------- str Text recognized on the image ``` --- *Blurring and filtering* - **gaussian_blur(image: np.ndarray):** ``` Wrapper for OpenCV's Gaussian blur. Image is blurred with (3, 3) kernel. Parameters ---------- image: numpy.ndarray Image as numpy array. Should be converted into grayscale. Returns ------- numpy.ndarray Blurred image using Gaussian blur Contribute ---------- Source: https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=gaussianblur#gaussianblur ``` - **median_blur(image: np.ndarray):** ``` Wrapper for OpenCV's median blur. Aperture linear size for medianBlur is 3. Parameters ---------- image: numpy.ndarray Image as numpy array. Should be converted into grayscale. Returns ------- numpy.ndarray Blurred image using median blur Contribute ---------- Source: https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=medianblur#medianblur ``` - **bilateral_filter(image: np.ndarray):** ``` Wrapper for OpenCV's bilateral filter. Diameter of each pixel neighborhood is 11. Both filter sigma in the color space and filter sigma in the coordinate space are 17. Parameters ---------- image: numpy.ndarray Image as numpy array. Should be converted into grayscale. Returns ------- numpy.ndarray Blurred image using bilateral filter Contribute ---------- Source: https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=bilateralfilter#bilateralfilter ``` --- *Tresholding images* - **canny(image: np.ndarray, threshold1: int, threshold2: int):** ``` Wrapper for OpenCV's Canny algorithm. Parameters ---------- image : numpy.ndarray Image as numpy array threshold1 : int Lower value of the threshold threshold2 : int Upper value of the threshold Returns ------- numpy.ndarray Binarized image using Canny's algorithm. Contribute ---------- Source: https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html ``` - **auto_canny(image: np.ndarray, sigma: float = 0.33):** ``` Function automatically sets up lower and upper value of the threshold based on sigma and median of the image Parameters ---------- image : numpy.ndarray Image as numpy array sigma : float Returns ------- numpy.ndarray Binarized image with Canny's algorithm Contribute ---------- Source: https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html ``` - **threshold_otsu(image: np.ndarray):** ``` Wrapper for OpenCV's Otsu's threshold algorithm. Parameters ---------- image : numpy.ndarray Image as numpy array Returns ------- numpy.ndarray Binarized image using Otsu's algorithm. Contribute ---------- Source: https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html ``` - **adaptive_threshold(image: np.ndarray):** ``` Wrapper for OpenCV's adaptive threshold algorithm. Parameters ---------- image : numpy.ndarray Image as numpy array Returns ------- numpy.ndarray Binarized image using adaptive threshold. Contribute ---------- Source: https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html ``` --- *OCR functions* - **ocr(img_path: str):** ``` Wrapper for Tesseract image_to_string function Parameters ---------- img_path : str Path to the image Returns ------- str Text recognized on the image Contribute ---------- PyTesseract: https://pypi.org/project/pytesseract/ ``` --- *Image processing* - **preprocess(image: np.ndarray, new_size: tuple, blurring_method: Callable, binarization_method: Callable):** ``` Resizing, converting into grayscale, blurring and binarizing Parameters ---------- image : numpy.ndarray Image as numpy array new_size : tuple of integers First argument of the tuple is new width, second is the new height of the image blurring_method : function Function as an object. Suggested functions from this module: gaussian_blur, median_blur, bilateral_filter binarization_method : function Function as an object. Suggested functions from this module: threshold_otsu, adaptive_threshold, canny, auto_canny Returns ------- numpy.ndarray Preprocessed image. Contribute ---------- Grayscale conversion: https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html Bilateral filter: https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html ``` - **plate_contours(image: np.ndarray):** ``` Finding contours on the binarized image. Returns only 10 (or less) the biggest rectangle contours found on the image. Parameters ---------- image : numpy.ndarray Binarized image as numpy array Returns ------- list of numpy.ndarray List of found OpenCV's contours. Contribute ---------- Finding contours: https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#findcontours ``` - **crop_image(original_img: np.ndarray, plate_cnt: np.ndarray):** ``` Wrapper for Tesseract image_to_string function Parameters ---------- img_path : str Path to the image Returns ------- str Text recognized on the image Contribute ---------- PyTesseract: https://pypi.org/project/pytesseract/ ``` - **prepare_ocr(image: np.ndarray):** ``` Prepares image to the OCR process by resizing and filtering (for noise reduction) Parameters ---------- image : numpy.ndarray Image as numpy array Returns ------- numpy.ndarray Image prepaired to the OCR process Contribute ---------- Resizing: https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#void%20resize(InputArray%20src,%20OutputArray%20dst,%20Size%20dsize,%20double%20fx,%20double%20fy,%20int%20interpolation) Bilateral filter: https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html ``` ## License **know_your_plates** is released under the [MIT License](https://opensource.org/licenses/MIT).


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl KnowYourPlates-0.1.1:

    pip install KnowYourPlates-0.1.1.whl


نصب پکیج tar.gz KnowYourPlates-0.1.1:

    pip install KnowYourPlates-0.1.1.tar.gz