معرفی شرکت ها


KnnClassificationRobGin-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package for KNN Classification
ویژگی مقدار
سیستم عامل OS Independent
نام فایل KnnClassificationRobGin-1.0.0
نام KnnClassificationRobGin
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Md Robiuddin
ایمیل نویسنده mrrobi040@hotmail.com
آدرس صفحه اصلی https://github.com/Mrrobi/python/tree/master/packages/KnnClassification
آدرس اینترنتی https://pypi.org/project/KnnClassificationRobGin/
مجوز -
# KNN Classification Algorithm. Anyone of you can use this library to do KNN Classification in Google Colab with a all numeric valued dataset. [Github Open Source](https://github.com/Mrrobi/python/tree/master/packages/KnnClassification) ## Existing methods * KnnClassification(path,TargetAtLast) - It takes two parameter first one is a string of the csv file path and the second one is a boolean to specify, the position of the target coloum it target is at last then the value will be True.Returns a object of KnnClassification class * loadToList() - It returns the loaded dataset as a python list. * list_split(DataList) - It takes a single parameter the dataset list from the which is the return value of previous method,and it return a tuple containing three list Splited into Train(70%), Validation(15%), Test(15%). * knn(x_list,y_list,k) - It takes three parameter first one is either validation list or test list, second one is train list and the third one is value of k, It returns the accuracy of the dataset. ## using process ### 1st need to add the library ```python pip install KnnClassificationRobGin ``` ### 2nd You must need to mount your google drive if you want to load csv from your drive ```python from google.colab import drive drive.mount('/content/gdrive') # You must need to run this code script at first to mount your drive with colab ``` [Mount Drive with colab](https://colab.research.google.com/notebooks/io.ipynb) ### 3rd you need to copy the csv file path for further use ### 4th import KnnClassificationRobGin and set the file path and target position ```python import KnnClassificationRobGin as KNN KNN = KNN.KnnClassification("/content/sample_data/file_name.csv",True) #set path ``` ### 5th load the dataset into a list and split it ```python DataList = KNN.loadToList() #Loading the list of given dataset Train,Validation,Test = KNN.list_split(DataList) # Spliting dataset into three ``` ### Run the knn to show the accuracy of the dataset ```python Accuracy = KNN.knn(Validation,Train,5) #Put Validation list to train or put test list to test.(here k=5) print(Accuracy) ``` ## N.B: Its not neccessary to split your dataset using given method(fix size) you could split your dataset by your own custom size as well :)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl KnnClassificationRobGin-1.0.0:

    pip install KnnClassificationRobGin-1.0.0.whl


نصب پکیج tar.gz KnnClassificationRobGin-1.0.0:

    pip install KnnClassificationRobGin-1.0.0.tar.gz