معرفی شرکت ها


JustCause-0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Comparing methods for causality analysis in a fair and just way.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل JustCause-0.4
نام JustCause
نسخه کتابخانه 0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Maximilian Franz, Florian Wilhelm
ایمیل نویسنده Maximilian.Franz@inovex.de, Florian.Wilhelm@inovex.de
آدرس صفحه اصلی https://github.com/inovex/justcause/
آدرس اینترنتی https://pypi.org/project/JustCause/
مجوز mit
[![Docs Status](https://readthedocs.org/projects/justcause/badge/?version=latest)](https://justcause.readthedocs.io/en/latest/?badge=latest) [![CI Status](https://api.cirrus-ci.com/github/inovex/justcause.svg?branch=master)](https://cirrus-ci.com/github/inovex/justcause) [![Coverage Status](https://coveralls.io/repos/github/inovex/justcause/badge.svg?branch=master)](https://coveralls.io/github/inovex/justcause?branch=master) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://black.readthedocs.io/en/stable/) [![PyPI-Server](https://img.shields.io/pypi/v/justcause.svg)](https://pypi.org/project/justcause/) <div style="text-align:center"> <p align="center"> <img alt="JustCause logo" src="https://justcause.readthedocs.io/en/latest/_static/logo.png"> </p> </div> <br/> # Introduction Evaluating causal inference methods in a scientifically thorough way is a cumbersome and error-prone task. To foster good scientific practice **JustCause** provides a framework to easily: 1. evaluate your method using common data sets like IHDP, IBM ACIC, and others; 2. create synthetic data sets with a generic but standardized approach; 3. benchmark your method against several baseline and state-of-the-art methods. Our *cause* is to develop a framework that allows you to compare methods for causal inference in a fair and *just* way. JustCause is a work in progress and new contributors are always welcome. # Installation If you just want to use the functionality of JustCause, install it with: ``` pip install justcause ``` Consider using [conda] to create a virtual environment first. Developers that want to develop and contribute own algorithms and data sets to the JustCause framework, should: 1. clone the repository and change into the directory ``` git clone https://github.com/inovex/justcause.git cd justcause ``` 2. create an environment `justcause` with the help of [conda], ``` conda env create -f environment.yaml ``` 3. activate the new environment with ``` conda activate justcause ``` 4. install `justcause` with: ``` python setup.py install # or `develop` ``` Optional and needed only once after `git clone`: 5. install several [pre-commit] git hooks with: ``` pre-commit install ``` and checkout the configuration under `.pre-commit-config.yaml`. The `-n, --no-verify` flag of `git commit` can be used to deactivate pre-commit hooks temporarily. # Related Projects & Resources 1. [causalml]: causal inference with machine learning algorithms in Python 2. [DoWhy]: causal inference using graphs for identification 3. [EconML]: Heterogeneous Effect Estimation in Python 4. [awesome-list]: A very extensive list of causal methods and respective code 5. [IBM-Causal-Inference-Benchmarking-Framework]: Causal Inference Benchmarking Framework by IBM 6. [CausalNex]: Bayesian Networks to combine machine learning and domain expertise for causal reasoning. ## Note This project has been set up using [PyScaffold] 3.2.2 and the [dsproject extension] 0.4. For details and usage information on PyScaffold see https://pyscaffold.org/. [conda]: https://docs.conda.io/ [pre-commit]: https://pre-commit.com/ [Jupyter]: https://jupyter.org/ [Google style]: http://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings [PyScaffold]: https://pyscaffold.org/ [dsproject extension]: https://github.com/pyscaffold/pyscaffoldext-dsproject [causalml]: https://github.com/uber/causalml [DoWhy]: https://github.com/Microsoft/dowhy [EconML]: https://github.com/microsoft/EconML [awesome-list]: https://github.com/rguo12/awesome-causality-algorithms [IBM-Causal-Inference-Benchmarking-Framework]: https://github.com/IBM-HRL-MLHLS/IBM-Causal-Inference-Benchmarking-Framework [CausalNex]: https://causalnex.readthedocs.io/


نیازمندی

مقدار نام
- numpy
- pyarrow
>=1.0 pandas
- scikit-learn
- requests
- pygam
- pytest
- pytest-cov


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl JustCause-0.4:

    pip install JustCause-0.4.whl


نصب پکیج tar.gz JustCause-0.4:

    pip install JustCause-0.4.tar.gz