معرفی شرکت ها


ImpactLearning-1.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل OS Independent
نام فایل ImpactLearning-1.8
نام ImpactLearning
نسخه کتابخانه 1.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kowsher Ahmed, Avishek Das
ایمیل نویسنده ahmedshuvo969@gmail.com, avishek.das.ayan@gmail.com
آدرس صفحه اصلی https://github.com/Kowsher/Impact-Learning-
آدرس اینترنتی https://pypi.org/project/ImpactLearning/
مجوز MIT
# Impact Learning ## Impact Learning is a new machine learning algoirthm. Impact learning is a supervised and competitive learning algorithm for inducing classification, linear or polynomial regression knowledge from examples. The primary principle of this method is to learn from a competition which is the impact of independent features; to be more specific it fits curve by the back forces or impacts of features from the intrinsic rate of natural increase (RNI); since every real dataset follows the aptitude of RNI. The input to Impact Learning is a training set of numerical data. To be more prominently, every feature of our life follows the trend of RNI, on the other hand, there are more back forces on which the feature need to be dependent. As a result, the target is impacted by other features of the back forces which can be named for a specific force as “Back Impact on Target (BIT)”. Since the target feature relies on BITs that is why every BIT also depends on the target feature. Basically, the machine learning or statistical learning datasets derive from real sectors of target territories, consequently, they flow the trend of RNI. So it will be a procedure to generate the algorithm (Impact Learning) from the flow of RNI. Furthermore, this method learns from the effect of BITs and in real life, every business sector has good competitors; the impact learning can be used in order to depict the competition among the competitors. In addition, the trained impact learning can be also used for checking multicollinearity or redundancy for feature selection. -A framework of this algorithm is being developed. Very soon, it will be made open source, if you have captivating to use in your work just [email me](ga.kowsher@gamil.com) ## Installation: ``` pip install ImpactLearning ``` ## Usage of Regressor: ### 1. validation with test data ```python from ImpactLearning import Regressor import numpy as np import pandas as pd dataTrain = pd.read_csv('brainhead_train.csv') dataTest = pd.read_csv('brainhead_test.csv') x_train = dataTrain.iloc[:, :-1].values y_train = dataTrain.iloc[:, 3].values x_test = dataTest.iloc[:, :-1].values y_test = dataTest.iloc[:, 3].values il = Regressor() il.fit(x_train,y_train, x_test, y_test, loss_function="MAE", optimizer = "GD",) il.train(epochs=2000, lr=0.5, progress_per=100) ``` Output: ``` Epoch: 100, train_loss: 741.998779, test_loss: 659.725098 Epoch: 200, train_loss: 67.431602, test_loss: 54.413006 --------------------------------------------------- Epoch: 2000, train_loss: 66.067902, test_loss: 52.447800 Training Completed ``` #### 1.1 Get Scores ```python il.get_scores() ``` Output ``` {'max_test_loss': 4119.4272, 'max_train_loss': 4534.379, 'min_test_loss': 50.623547, 'min_train_loss': 66.0679} ``` ### 2. without validation ```python from ImpactLearning import Regressor import numpy as np import pandas as pd dataTrain = pd.read_csv('brainhead_train.csv') dataTest = pd.read_csv('brainhead_test.csv') x_train = dataTrain.iloc[:, :-1].values y_train = dataTrain.iloc[:, 3].values x_test = dataTest.iloc[:, :-1].values y_test = dataTest.iloc[:, 3].values il = Regressor() il.fit(x_train,y_train, loss_function="MAE", optimizer = "GD",) il.train(epochs=2000, lr=0.5, progress_per=100) ``` Output: ``` Epoch: 100, loss: 741.998779 Epoch: 200, loss: 67.431602 ---------------------- Epoch: 2000, loss: 66.067902 ``` #### 2.1 Get Scores ```python il.get_scores() ``` Output ``` Loss: 66.067902 ``` ### 3. Prediction ```python il.predict(x_test[:5]) ``` Output ``` array([[1303.717 ], [1108.7083], [1177.2151], [1048.9008], [1297.9176]], dtype=float32) ``` ### 4. Coefficients ```python il.get_coefficients() ``` Output ``` {'Bias': array([-38.508266], dtype=float32), 'Carrying Capacity': 1635.1, 'RNI': array([-1.0669531], dtype=float32), 'WeightX': array([[ -0.34179878], [ 0.5568241 ], [-288.52682 ]], dtype=float32), 'Weighty': array([796.0016], dtype=float32)} ``` ### 5. Loss Values ```python il.getLossValues() ``` Output ``` [4534.379, 4418.933, 4309.73, 4206.1646, 4107.7134, ----------] ``` ## Usage of Classifier: ### 1. validation with test data ```python from ImpactLearning import Classifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split iris=load_iris() X=iris.data y=iris.target x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20) il = Classifier() il.fit(x_train, y_train,x_test, y_test, CCapacity=1, num_classes=3, optimizer="GD", loss_function="CategoricalCrossentropy") il.train(epochs = 1000, lr=0.001, progress_per=100) ``` Output: ``` Epoch: 100, train_loss: 0.484322, test_loss: 0.479262, train_accuracy: 0.683333 test_accuracy: 0.666667 Epoch: 200, train_loss: 0.376250, test_loss: 0.355702, train_accuracy: 0.775000 test_accuracy: 0.800000 ---------------------------------------------------- Epoch: 1000, train_loss: 0.055509, test_loss: 0.148505, train_accuracy: 0.975000 test_accuracy: 0.966667 Training Completed ``` #### 1.1 Get Scores ```python il.get_scores() ``` Output ``` {'max_test_accuracy': 0.96666664, 'max_test_loss': 2.5907264, 'max_train_accuracy': 0.98333335, 'max_train_loss': 2.04851, 'min_test_accuracy': 0.16666667, 'min_test_loss': 0.11300503, 'min_train_accuracy': 0.34166667, 'min_train_loss': 0.0509217} ``` ### 2. without validation ```python from ImpactLearning import Classifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split iris=load_iris() X=iris.data y=iris.target x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20) il = Classifier() il.fit(x_train, y_train,CCapacity=1, num_classes=3, optimizer="GD", loss_function="CategoricalCrossentropy") il.train(epochs = 1000, lr=0.001, progress_per=100) ``` Output: ``` Epoch: 100, loss: 0.456280, train_accuracy: 0.716667 Epoch: 200, loss: 0.356472, train_accuracy: 0.808333 ----------------------------------------- Epoch: 1000, loss: 0.100295, train_accuracy: 0.966667 Training Completed ``` #### 2.1 Get Scores ```python il.get_scores() ``` Output ``` Accuracy: 0.966667 ``` ### 3. Prediction ```python il.predict(x_test[:10]) ``` Output ``` array([1, 2, 0, 1, 2, 0, 2, 1, 0, 1]) ``` ### 4. Coefficients ```python il.get_coefficients() ``` Output ``` {'Bias': array([ 0.00366024, 0.00528361, -0.00894384], dtype=float32), 'Carrying Capacity': 1.1, 'RNI': 1.0128337, 'WeightX': array([[0.90882355, 0.91059417, 1.1805835 ], [0.80056006, 0.9750843 , 1.2243568 ], [1.2586796 , 1.0555391 , 0.68578094], [1.1205307 , 1.1224369 , 0.7570329 ]], dtype=float32), 'Weighty': 0.98588395} ``` ### 5. Loss Values ```python il.getLossValues() ``` Output ``` [1.0501021, 1.0416512, ---------- 0.08514832, 0.082014434, 0.07910187] ``` ## Loss Functions ``` FOR Regressor 1.logcosh 2.huber 3.MSE 4.MAE 5.MAPE 6.Poisson 7.sqr_hinge FOR Classifier 1.BinaryCrossentropy 2.CategoricalCrossentropy 3.CosineSimilarity 4.Hinge 5.CategoricalHinge 6.Logosh 7.Poisson 8.SquaredHinge 9.KLD ``` ## OPTIMIZERS with supported Arguments use the arguments in fit() method ``` Adadelta rho=0.95, epsilon=1e-07 Adagrad initial_accumulator_value=0.1, epsilon=1e-07 Adam beta_1=0.9, beta_2=0.999, epsilon=1e-07 Adamax beta_1=0.9, beta_2=0.999, epsilon=1e-07 Ftrl learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, l2_shrinkage_regularization_strength=0.0 Nadam beta_1=0.9, beta_2=0.999, epsilon=1e-07 RMSprop rho=0.9, momentum=0.0, epsilon=1e-07 SGD momentum=0.0, nesterov=False, name='SGD' GD No Args ``` for more info about the arguments, visit https://www.tensorflow.orgapi_docs/python/tf/keras/optimizers


نیازمندی

مقدار نام
==2.10.0 h5py
==2.2.0 tensorflow
==1.18.5 numpy


نحوه نصب


نصب پکیج whl ImpactLearning-1.8:

    pip install ImpactLearning-1.8.whl


نصب پکیج tar.gz ImpactLearning-1.8:

    pip install ImpactLearning-1.8.tar.gz