معرفی شرکت ها


IBSpy-0.4.0rc0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package to detect IBS regions
ویژگی مقدار
سیستم عامل OS Independent
نام فایل IBSpy-0.4.0rc0
نام IBSpy
نسخه کتابخانه 0.4.0rc0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ricardo H. Ramirez-Gonzalez
ایمیل نویسنده ricardo.ramirez-gonzalez@jic.ac.uk
آدرس صفحه اصلی https://github.com/Uauy-Lab/IBSpy
آدرس اینترنتی https://pypi.org/project/IBSpy/
مجوز -
# IBSpy ![Python package](https://github.com/Uauy-Lab/IBSpy/workflows/Python%20package/badge.svg) [![Maintainability](https://api.codeclimate.com/v1/badges/5a4b1b0e89f7f9f8c34c/maintainability)](https://codeclimate.com/github/Uauy-Lab/IBSpy/maintainability) Python library to identify Identical By State regions To build the mker database for kmc and the tests run this comand: ```sh kmc -k31 -r -ci1 -fm data/test4B.jagger.fa data/test4B.jagger.kmc_k31 tmp ``` ## Installyng IBSpy There easiest way to install IBSpy is to use pip3. ```sh pip3 install IBSpy ``` If ```pip3``` fails, you can clone the project and compiling it with: ```sh pip3 install cython biopython pyfaidx python3 setup.py develop ``` Then you should have the IBSpy command available. ### KMC3 If you want to use the [KMC](https://github.com/refresh-bio/KMC) binder, install the KMC and compile the python instructions. Then, run the following command to setup the path for it. ```sh cd KMC/py_kmc_api source set_path.sh ``` ## Preparing the databases IBSpy requires to have a kmer database from the sequencing files. Currently two formats are supported: 1. Jellyfish: Follow the instructions in its [website](https://github.com/gmarcais/Jellyfish/blob/master/doc/Readme.md) 2. kmerGWAS: Has an adhoc file format that contains only the kmers in a binary representation, sorted. This option is faster than the jellyfish version, but creating the kmer table is less straight forward. The manual is [here](https://github.com/voichek/kmersGWAS/blob/master/manual.pdf). ## Runn unit tests To makes sure that your changes havent broken the core IBSpy, run the unit tests: ```sh python3 setup.py test ``` ## Running IBSPy IBSpy has relatively few options, you can look at them with the ```--help``` command. ```sh IBSPy --help usage: IBSPy [-h] [-w WINDOW_SIZE] [-k KMER_SIZE] [-d DATABASE] [-r REFERENCE] [-z] [-o OUTPUT] [-f {kmerGWAS,jellyfish}] optional arguments: -h, --help show this help message and exit -w WINDOW_SIZE, --window_size WINDOW_SIZE window size to analyze -k KMER_SIZE, --kmer_size KMER_SIZE Kmer size of the database -d DATABASE, --database DATABASE Kmer database -r REFERENCE, --reference REFERENCE The reference with the position of the kmers -z, --compress When an ouput file is present, it is compressed as .gz -o OUTPUT, --output OUTPUT Output file. If missing, the ouptut is sent to stdout -f {kmerGWAS,kmerGWAS_mmap,jellyfish,kmc3}, --database_format {kmerGWAS,kmerGWAS_mmap,jellyfish,kmc3} Database format ``` To generate the table with the number of observed kmers and variants run the following command, using the kmer database from kmerGWAS use the following command: ```sh IBSpy --output "kmer_windows_LineXXX.tsv.gz" -z --database kmers_with_strand --reference arinaLrFor.fa --window_size 50000 --compress --database_format kmerGWAS ``` For KMC3, the database is the name used while creating the database, not the filename. ## Running IBSplot Look at the IBSplot commands using ```--help```. ```sh IBSPy --help usage: IBSplot [-h] [-i IBSPY_COUNTS] [-w WINDOW_SIZE] [-f FILTER_COUNTS] [-n N_COMPONENTS] [-c COVARIANCE_TYPE] [-s STITCH_NUMBER] [-o OUTPUT] [-r REFERENCE] [-q QUERY] [-p PLOT_OUTPUT] optional arguments: -h, --help show this help message and exit -i IBSPY_COUNTS, --IBSpy_counts IBSPY_COUNTS tvs file genetared by IBSpy output -w WINDOW_SIZE, --window_size WINDOW_SIZE Windows size to count variations within -f FILTER_COUNTS, --filter_counts FILTER_COUNTS Filter number of variaitons above this threshold to compute GMM model, default=None -n N_COMPONENTS, --n_components N_COMPONENTS Number of componenets for the GMM model, default=3 -c COVARIANCE_TYPE, --covariance_type COVARIANCE_TYPE type of covariance used for GMM model, default="full" -s STITCH_NUMBER, --stitch_number STITCH_NUMBER Consecutive "outliers" in windows to stitch, default=3 -o OUTPUT, --output OUTPUT tsv file with variations count by windows and summary statistics -r REFERENCE, --reference REFERENCE genome reference name -q QUERY, --query QUERY query sample -p PLOT_OUTPUT, --plot_output PLOT_OUTPUT histograms and ascatter files in .PDF format ``` IBSplot uses the output table generated by IBSpy described above (e.g., ```"kmer_windows_LineXXX.tsv.gz"```). It can be used to count variant assigning larger windows. In the example below it is using 400,000 bp windows to compute a GMM model and generate the plots. To generate the table with variant count categorized by the GMM model as IBS or non-IBS and generate the plots, run the following command: The description of the GMM model is [here](https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture) ```sh # minimal arguments IBSplot --IBSpy_counts "kmeribs-Wheat_Jagger-Flame.tsv.gz" --window_size 400000 --output gmm_ibs.tsv.gz --reference Jagger --query Flame --plot_output gmm_plots.pdf ``` In addition, you can include some or all of the following commands to tune the GMM model parameters and define the best IBS and non-IBS according to the reference and query sample used: ```sh IBSplot --filter_counts 1000 --n_components 3 --covariance_type 'full' --stitch_number 3 ```


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl IBSpy-0.4.0rc0:

    pip install IBSpy-0.4.0rc0.whl


نصب پکیج tar.gz IBSpy-0.4.0rc0:

    pip install IBSpy-0.4.0rc0.tar.gz