معرفی شرکت ها


I2MC-2.1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Noise-robust fixation classification (I2MC).
ویژگی مقدار
سیستم عامل OS Independent
نام فایل I2MC-2.1.4
نام I2MC
نسخه کتابخانه 2.1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Diederick Niehorster
ایمیل نویسنده diederick_c.niehorster@humlab.lu.se
آدرس صفحه اصلی https://github.com/dcnieho/I2MC_Python
آدرس اینترنتی https://pypi.org/project/I2MC/
مجوز MIT License Copyright (c) 2019-2021 Jonathan van Leeuwen, Diederick Niehorster Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# Noise-robust fixation classification (I2MC) - Python implementation ## About I2MC Original description of the MATLAB implementation from https://github.com/royhessels/I2MC: The I2MC algorithm was designed to accomplish fixation classification in data across a wide range of noise levels and when periods of data loss may occur. Cite as: [Hessels, R.S., Niehorster, D.C., Kemner, C., & Hooge, I.T.C. (2017). Noise-robust fixation detection in eye-movement data - Identification by 2-means clustering (I2MC). Behavior Research Methods, 49(5): 1802–1823. doi: 10.3758/s13428-016-0822-1](https://link.springer.com/article/10.3758/s13428-016-0822-1) For more information, questions, or to check whether we have updated to a better version, e-mail: royhessels@gmail.com / dcnieho@gmail.com. I2MC is available from www.github.com/royhessels/I2MC Most parts of the I2MC algorithm are licensed under the Creative Commons Attribution 4.0 (CC BY 4.0) license. Some functions are under MIT license, and some may be under other licenses. ## About this implementation This is a Python implementation of the I2MC algorithm (tested on version Python 3.8). For the original Matlab implementation see https://github.com/royhessels/I2MC Most functions were initially ported to Python by Jonathan van Leeuwen. Diederick Niehorster and Roy Hessels updated a few functions to match the MATLAB version more closely and ported what remained. Note that this Python implementation may be slightly different from the MATLAB version. Among the differences is a different implementation of Chebyshev filtering (the Python version uses `scipy.signal.cheby1()`, the MATLAB version uses `cheby1` from the signal processing toolbox). The differences in output between the MATLAB and Python implementation of I2MC are visualized in Figure 1 and 2. As is visible from these Figures, slight differences in output between the MATLAB and Python implementations remain. As such, when using this Python implementation, please cite the original paper (see above) and mention that this Python implementation is used. ![](https://github.com/dcnieho/I2MC_Python/raw/master/Figure1.png) *Figure 1.* Number of fixations, mean fixation duration and *SD* of fixation duration for the MATLAB and Python I2MC implementations using the RMS noise data set from the original I2MC paper. I2MC is the original published version of I2MC. I2MC2019 is a slightly modified version (the latest version from the original I2MC repository as of this writing [v2.0.3]). _python stands for the Python implementation in this repository. _nc stands for No Chebychev filtering. For more information on this specific analysis see Figure 3 in the original I2MC paper and the corresponding text. ![](https://github.com/dcnieho/I2MC_Python/raw/master/Figure2.png) *Figure 2.* Classified fixations for episodes of example eye-tracking data using the MATLAB and Python I2MC implementations. I2MC is the original published version of I2MC. I2MC2019 is a slightly modified version (the latest version from the original I2MC repository as of this writing [v2.0.3]). _python stands from the Python implementation in this repository. _nc stands for No Chebychev filtering. For more information on this specific analysis see Figure 8 in the original I2MC paper and the corresponding text. ## Disclaimer We take no responsibility for the correct working of this Python implementation of I2MC. We provide this solely as a service to the part of the (scientific) community that prefers Python over MATLAB. As we are not dedicated Python programmers, we welcome any bug reports, as well as improved implementations of I2MC.


نیازمندی

مقدار نام
- numpy
- matplotlib
- scipy
- pandas


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl I2MC-2.1.4:

    pip install I2MC-2.1.4.whl


نصب پکیج tar.gz I2MC-2.1.4:

    pip install I2MC-2.1.4.tar.gz