معرفی شرکت ها


HEMnet-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

HEMnet package
ویژگی مقدار
سیستم عامل OS Independent
نام فایل HEMnet-1.0.0
نام HEMnet
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Andrew Su, Xiao Tan and Quan Nguyen
ایمیل نویسنده a.su@uqconnect.edu.au, xiao.tan@uq.edu.au, quan.nguyen@uq.edu.au
آدرس صفحه اصلی https://github.com/BiomedicalMachineLearning/HEMnet
آدرس اینترنتی https://pypi.org/project/HEMnet/
مجوز -
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/BiomedicalMachineLearning/HEMnet/master?filepath=Development) [![launch ImJoy](https://imjoy.io/static/badge/launch-imjoy-badge.svg)](https://imjoy.io/#/app?plugin=https://github.com/BiomedicalMachineLearning/HEMnet/blob/master/Demo/HEMnet_Tile_Predictor.imjoy.html) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/BiomedicalMachineLearning/HEMnet/blob/master/Demo/TCGA_Inference.ipynb) # HEMnet - Haematoxylin & Eosin and Molecular neural network ## Description A deep learning automated cancer diagnosis software using molecular labelling to improve pathological annotation of Haematoxylin and Eosin (H&E) stained tissue. ## Installation 1. Docker You can download and run the docker image using the following commands: ``` docker pull andrewsu1/hemnet docker run -it andrewsu1/hemnet ``` 2. Conda Install Openslide (this is necessary to open whole slide images) - download it [here](https://openslide.org/download/) Create a conda environment from the `environment.yml` file ``` conda env create -f environment.yml conda activate HEMnet ``` ## Usage ### Slide Preparation Name slides in the format: `slide_id_TP53` for TP53 slides and `slide_id_HandE` for H&E slides The `TP53` and `HandE` suffix is used by HEMnet to identify the stain used. ### 1. Generate training and testing datasets a. Generate train dataset `python HEMnet_train_dataset.py -b /path/to/base/directory -s relative/path/to/slides -o relative/path/to/output/directory -t relative/path/to/template_slide.svs -v` b. Generate test dataset `python HEMnet_test_dataset.py -b /path/to/base/directory -s /relative/path/to/slides -o /relative/path/to/output/directory -t relative/path/to/template_slide -m tile_mag -a align_mag -c cancer_thresh -n non_cancer_thresh` Other parameters: * `-t` is the relative path to the template slide from which all other slides will be normalised against. The template slide should be the same for each step. * `-m` is the tile magnification. e.g. if the input is `10` then the tiles will be output at 10x * `-a` is the align magnification. Paired TP53 and H&E slides will be registered at this magnification. To reduce computation time we recommend this be less than the tile magnification - a five times downscale generally works well. * `-c` cancer threshold to apply to the DAB channel. DAB intensities less than this threshold indicate cancer. * `-n` non-cancer threshold to apply to the DAB channel. DAB intensities greater than this threshold indicate no cancer. ### 2. Train and evaluate model a. Training model `python train.py -b /path/to/base/directory -t relative/path/to/training_tile_directory -l relative/path/to/validation_tile_directory -o /relative/path/to/output/directory -m cnn_base -g num_gpus -e epochs -a batch_size -s -w -f -v` Other parameters: * `-m` is CNN base model. eg. `resnet50`, `vgg16`, `vgg19`, `inception_v3` and `xception`. * `-g` is number of GPUs for training. * `-e` is training epochs. Default is `100` epochs. * `-a` is batch size. Default is `32` * `-s` is option to save the trained model weights. * `-w` is option to used transfer learning. Model will used pre-trained weights from ImageNet at the initial stage. * `-f` is fine-tuning option. Model will re-train CNN base. b. Test model prediction `python test.py -b /path/to/base/directory -t relative/path/to/test_tile_directory -o /relative/path/to/output/directory -w model_weights -m cnn_base -g num_gpus -v` Other parameters: * `-w` is path to trained model. eg. `trained_model.h5`. * `-m` is CNN base model (same to training step). * `-g` is number of GPUs for prediction. c. Evaluate model performance and visualise model prediction `python visualisation.py -b /path/to/base/directory -t /relative/path/to/training_output_directory -p /relative/path/to/test_output_directory -o /relative/path/to/output/directory -i sample` Other parameters: * `-t` is path to training outputs. * `-p` is path to test outputs. * `-i` is name of Whole Slide Image for visualisation. ### 3. Apply model to diagnose new images `python HEMnet_inference.py -s '/path/to/new/HE/Slides/' -o '/path/to/output/directory/' -t '/path/to/template/slide/' -nn '/path/to/trained/model/' -v` Predict on TCGA images with our pretrained model for colorectal cancer using [google colab](https://colab.research.google.com/github/BiomedicalMachineLearning/HEMnet/blob/master/Demo/TCGA_Inference.ipynb) ## Results ## Citing HEMnet ## The Team Please contact Dr Quan Nguyen (quan.nguyen@uq.edu.au), Andrew Su (a.su@uqconnect.edu.au), and Xiao Tan (xiao.tan@uqconnect.edu.au) for issues, suggestions, and we are very welcome to collaboration opportunities.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl HEMnet-1.0.0:

    pip install HEMnet-1.0.0.whl


نصب پکیج tar.gz HEMnet-1.0.0:

    pip install HEMnet-1.0.0.tar.gz