معرفی شرکت ها


GeneticAlgos-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Simple and powerful Python library for creating genetic algorithms.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل GeneticAlgos-1.0.2
نام GeneticAlgos
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lukas Kozelnicky
ایمیل نویسنده python@kozelnicky.com
آدرس صفحه اصلی https://geneticalgos.readthedocs.io/en/latest/
آدرس اینترنتی https://pypi.org/project/GeneticAlgos/
مجوز MIT
GeneticAlgos ============ .. image:: https://github.com/lkozelnicky/GeneticAlgos/workflows/Tests/badge.svg :target: https://github.com/lkozelnicky/GeneticAlgos/actions?query=workflow%3ATests+branch%3Amaster .. image:: https://coveralls.io/repos/github/lkozelnicky/GeneticAlgos/badge.svg?branch=master :target: https://coveralls.io/github/lkozelnicky/GeneticAlgos?branch=master .. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black .. image:: https://img.shields.io/pypi/v/GeneticAlgos.svg :target: https://pypi.python.org/pypi/GeneticAlgos .. image:: https://img.shields.io/pypi/l/GeneticAlgos.svg :target: https://pypi.python.org/pypi/GeneticAlgos .. image:: https://img.shields.io/pypi/pyversions/GeneticAlgos.svg :target: https://pypi.python.org/pypi/GeneticAlgos .. image:: https://raw.githubusercontent.com/lkozelnicky/GeneticAlgos/master/docs/_static/GeneticAlgos.png :align: center :alt: GenticAlgos logo GeneticAlgos is a simple and powerful Python library for creating genetic algorithms to solve complex optimization problems. GeneticAlgos is built on NumPy and it is under active development. - Uses smart defaults for genetic algorithms parameters which are good enough for generic use cases or for testing. - A simple-to-use API to modify genetic algorithms parameters. - Lightweight and just one dependency - Numpy. - Excellent test coverage. - Tested on Python 3.7, 3.8, 3.9 and 3.10 Documentation _____________ Online documentation is available at `https://geneticalgos.readthedocs.io/en/latest/ <https://geneticalgos.readthedocs.io/en/latest/>`_. The docs include a `introduction to genetic algorithms <https://geneticalgos.readthedocs.io/en/latest/introduction.html>`_, `examples <https://geneticalgos.readthedocs.io/en/latest/examples.html>`_, `advanced usage <https://geneticalgos.readthedocs.io/en/latest/advanced.html>`_, and other useful information. Usage _____ ``geneticalgos`` is available on `PYPI <https://pypi.python.org/pypi/GeneticAlgos/>`_. Install with ``pip``: .. code-block:: bash $ pip install geneticalgos **Trivial example**: We want to find a set of ``X=(x1, x2, x3, x4)`` which maximizes sum(x1, x2, x3, x4), when each element x is a float from interval (0, 10). Simple answer is: ``x1 = 10, x2 = 10, x3 = 10, x4 = 10``. First, we define our fitness function (sum) and then gene_intervals for each x. All other parameters (population size, crossover method, mutation probability, ...) are configured with default values. However, you can change and tweak them easily - `Advanced usage <https://geneticalgos.readthedocs.io/en/latest/advanced.html>`__. .. code-block:: python import geneticalgos as ga import numpy as np def custom_fitness_function(chromosome): return sum(chromosome) gene_intervals = np.array([[0, 10]] * 4) # Create genetic algorithms with default values for GA parameters # and our fitness function and gene intervals ga_model = ga.GeneticAlgo( fitness_function=custom_fitness_function, gene_intervals=gene_intervals, ) # Start genetic algorithm simulation ga_model.simulate() # print best solution print(ga_model.best_chromosome) # print fitness value for best chromosome print(ga_model.best_fitness) When to use GeneticAlgos ________________________ The main goal of the GeneticAlgos is to be `simple` and `powerful`. * Simple, because it can be used with **basic knowledge of python** (data structures, functions, ...). * Simple, because it can be used with **basic knowledge of genetic algorithms** (population, chromosome, fitness function, ...). * Powerful, because **we can tweak many genetic algorithms parameters** very easily and create complex models with the minimum of configuration. When **not** to use GeneticAlgos ________________________________ Let's be honest, genetic algorithms are very complex algorithms which have a lot of modifications from a standard scheme. You should look somewhere else if you need: * Something other than binary or numerical encoding - like permutation, strings, ... * Chromosome genes with different encoding within same chromosome - some genes are float numbers and some of them integers. * An end criterion that is different from a fixed number of generation cycles. Issues ______ If you encounter any problems, please `file an issue <http://github.com/lkozelnicky/GeneticAlgos/issues>`_ along with a detailed description. Thank you 😃 About GeneticAlgos __________________ Created by `Lukas Kozelnicky`. Distributed under the MIT license. See ``LICENSE.txt`` for more information.


نیازمندی

مقدار نام
- numpy


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl GeneticAlgos-1.0.2:

    pip install GeneticAlgos-1.0.2.whl


نصب پکیج tar.gz GeneticAlgos-1.0.2:

    pip install GeneticAlgos-1.0.2.tar.gz