معرفی شرکت ها


GaugeRnR-0.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A simple library for calculating Gauge RnR
ویژگی مقدار
سیستم عامل OS Independent
نام فایل GaugeRnR-0.6.0
نام GaugeRnR
نسخه کتابخانه 0.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alexander Poole
ایمیل نویسنده alex.o.poole@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/GaugeRnR/
مجوز MIT
# Gauge R&R [![GitHub](https://github.com/owodunni/gaugernr/workflows/Python%20package/badge.svg)](https://github.com/owodunni/GaugeRnR) [![PyPi](https://img.shields.io/pypi/v/GaugeRnR)](https://pypi.org/project/GaugeRnR/) [![License](https://img.shields.io/github/license/owodunni/GaugeRnR)](https://github.com/owodunni/GaugeRnR/blob/master/LICENSE) ## Table of Contents 1. [Install](#Install) 2. [CLI](#CLI) 3. [Example](#Example) 4. [Statistics](#Statistics) ## Install From PyPi: ``` vim pip install GaugeRnR ``` From source: ``` console pip install -e . ``` Development dependencies: ``` vim pip install -r pip/requirements-dev.txt ``` ## CLI The package can be used to generate reports from CLI: ```vim GaugeRnR -f data/data_mXop.csv -s 3,5,11 -o outDir ``` This generates a html report that is stored in the outDir folder. Setting the axes parameter is usefull if the data is not structured correct: ```vim GaugeRnR -f data/data_opXm.csv -s 5,7,11 -a 2,1,0 -o outDir ``` To calculate linearity and bias ground truth is required: ```vim GaugeRnR -f data/data_demoGRnR.csv -s 3,10,3 -a 0,2,1 -g 40,42,30,43,29,45,27.5,42,26,35 -o outDir ``` For more help run: ```vim GaugeRnR -h ``` ``` GaugeRnR. The input data should be structeted in a 3d array n[i,j,k] where i = operator, j = part, k = measurement Stored to file this data would look: m1 m2 m3 3.29; 3.41; 3.64 # p1 | o1 2.44; 2.32; 2.42 # p2 3.08; 3.25; 3.07 # p1 | o2 2.53; 1.78; 2.32 # p2 3.04; 2.89; 2.85 # p1 | o3 1.62; 1.87; 2.04 # p2 More info: https://github.com/owodunni/GaugeRnR Usage: GaugeRnR -f FILE -s STRUCTURE [-a <AXES>] [-d <DELIMITER>] [-o <FOLDER>] [-g <PARTS>] GaugeRnR -h | --help GaugeRnR -v | --version Examples: GaugeRnR -f data.csv -s5,7,11 -o report GaugeRnR -f data/data_mXop.csv -s 3,5,11 -o outDir GaugeRnR -f data/data_opXm.csv -s 5,7,11 -a 2,1,0 -o outDir GaugeRnR -f data/data_demoGRnR.csv -s 3,10,3 -a 0,2,1 -g 40,42,30,43,29,45,27.5,42,26,35 -o outDir Options: -f --file=FILE Load input data. -s --structure=STRUCTURE Data structure. Order should be operators, parts, measurements. -a --axes=<AXES> Order of data axes [default: 0,1,2]. -d --delimiter=<DELIMITER> Order of data axes [default: ;]. -o --output=<FOLDER> Report output directory -g --groundTruth=<PARTS> Ground Truth data for parts -h --help Show this screen. -v --version Show version. ``` ## Example The package can be used in the following way: ``` python from gaugeRnR import GaugeRnR import numpy as np # The input should be structeted in a 3d # numpy array n[i,j,k] where # i = operator, j = part, k = measurement # Example: # m1 m2 m3 data = np.array( # [[[3.29, 3.41, 3.64], # p1 | o1 [2.44, 2.32, 2.42], # p2 [4.34, 4.17, 4.27], # p3 [3.47, 3.5, 3.64], # p4 [2.2, 2.08, 2.16]], # p5 [[3.08, 3.25, 3.07], # p1 | o2 [2.53, 1.78, 2.32], # p2 [4.19, 3.94, 4.34], # p3 [3.01, 4.03, 3.2], # p4 [2.44, 1.8, 1.72]], # p5 [[3.04, 2.89, 2.85], # p1 | o3 [1.62, 1.87, 2.04], # p2 [3.88, 4.09, 3.67], # p3 [3.14, 3.2, 3.11], # p4 [1.54, 1.93, 1.55]]]) # p5 g = GaugeRnR(data) g.calculate() print(g.summary()) ``` This will result in the following table: | Sources of Variance | DF | SS | MS | Var (σ²) | Std (σ) | F-value | P-value | |-----------------------|------|--------|-------|------------|-----------|-----------|-----------| | Operator | 2 | 1.63 | 0.815 | 0.054 | 0.232 | 100.322 | 0.000 | | Part | 4 | 28.909 | 7.227 | 0.802 | 0.896 | 889.458 | 0.000 | | Operator by Part | 8 | 0.065 | 0.008 | 0 | 0 | 0.142 | 0.996 | | Measurment | 30 | 1.712 | 0.057 | 0.057 | 0.239 | | | | Total | 44 | 32.317 | 0.734 | 0.913 | 0.956 | | | To access the result from the Gauge RnR data directly: ``` python from gaugeRnR import GaugeRnR, Component, Result . . . g = GaugeRnR(data) result = g.calculate() F = result[Result.F] >>> print(F[Component.OPERATOR]) 100.322 ``` For more examples of how to use this library take a look at the [unit tests](https://github.com/owodunni/GaugeRnR/tree/master/tests)! ## Statistics The pacakge can generate the following statistics: * GaugeRnR Gauge R&R, which stands for gage repeatability and reproducibility, is a statistical tool that measures the amount of variation in the measurement system arising from the measurement device and the people taking the measurement. Unfortunately, all measurement data contains a certain percentage of variation. The variation is the difference between the true values and the observed values. The variation represents the amount of measurement error. In addition to measurement error, is the actual product or process variation. When we combine measurement error with product or process variation the resulting value represents the total variation. To assure that our measurement data is accurate we must determine if the amount of variation is acceptable If the p value is less than 0.05, it means that the source of variation has a significant impact on the results. For more information take a look at: * [anova-gage-rr-part-1](https://www.spcforexcel.com/knowledge/measurement-systems-analysis/anova-gage-rr-part-1) * [anova-gage-rr-part-2](https://www.spcforexcel.com/knowledge/measurement-systems-analysis/anova-gage-rr-part-2) * [Introduction to Statistical Quality Control 6th Edition](https://www.amazon.com/Introduction-Statistical-Quality-Control-Montgomery/dp/0470169923) * Mean, Standard Deviation and bar chart plots. To get a better feel for our measurement data we can plot it togheter with a bar chart and show some caracteristic statistics of the data. * Normality test For Gauge R&R to work it is important that our data is normal distibuted. If we don't have enough data the it might not be normal distributed. We can test if the data is normal distributed using a Shapiro-Wilk Test. Small values of W are evidence of departure from normality. It is important that our parts are normally distributed. A P-value smaller then 0.05 indicates that the data is not Gaussian. For more information take a look at: * [Engineering statistics handbook](https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm) * [Normality tests in python](https://machinelearningmastery.com/a-gentle-introduction-to-normality-tests-in-python/) * Linearity and Bias - requires ground truth data Bias and linearity assess the accuracy of a gage. * Bias examines the difference between the observed average measurement and a reference value. Bias indicates how accurate the gage is when compared to a reference value. * Linearity examines how accurate your measurements are through the expected range of the measurements. Linearity indicates whether the gage has the same accuracy across all reference values. A P-value smaller then 0.05 indicates that a linear equation fits well to the data. For more information take a look at: * [Measurement System Analysis](http://reliawiki.org/index.php/Measurement_System_Analysis?fbclid=IwAR2uptrlw9MyMaOVLXCOE89GDvN8hNb0qfxgxfxZs7msewQ7ijzqfnGp8oc)


نیازمندی

مقدار نام
- numpy
- scipy
- tabulate
- docopt
- statsmodels
- plotly


نحوه نصب


نصب پکیج whl GaugeRnR-0.6.0:

    pip install GaugeRnR-0.6.0.whl


نصب پکیج tar.gz GaugeRnR-0.6.0:

    pip install GaugeRnR-0.6.0.tar.gz