معرفی شرکت ها


GPyM-TM-3.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The following package enables users to perform text modelling
ویژگی مقدار
سیستم عامل OS Independent
نام فایل GPyM-TM-3.0.1
نام GPyM-TM
نسخه کتابخانه 3.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jocelyn Mazarura
ایمیل نویسنده <jocelyn.mazarura@up.ac.za>
آدرس صفحه اصلی https://github.com/jrmazarura/GPM
آدرس اینترنتی https://pypi.org/project/GPyM-TM/
مجوز -
# [GPyM_TM](https://github.com/jrmazarura/GPM) **GPyM_TM** is a Python package to perform topic modelling, either through the use of a Dirichlet multinomial mixture model, or a Poisson model. Each of the above models is available within the package in a separate class, namely GSDMM utilizes the Dirichlet multinomial mixture model, while GPM makes use of the Poisson model to perform the text clustering respectively. The package is also available on [Pypi](https://pypi.org/project/GPyM-TM/3.0.0/). ## Preamble The aim of topic modelling is to extract latent topics from large corpora. GSDMM [1] assumes each document belongs to a single topic, which is a suitable assumption for some short texts. Given an initial number of topics, K, this algorithm clusters documents and extracts the topical structures present within the corpus. If K is set to a high value, then the model will also automatically learn the number of clusters. [1] Yin, J. and Wang, J., 2014, August. A Dirichlet multinomial mixture model-based approach for short text clustering. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 233-242). ## Getting Started: The package is available [online](https://pypi.org/project/GPyM-TM/) for use within Python 3 enviroments. The installation can be performed through the use of a standard 'pip' install command, as provided below: `pip install GPyM-TM` ## Prerequisites: The package has several dependencies, namely: * numpy * random * math * pandas * re * nltk * gensim * scipy # GSDMM ## Function and class description: The class is named **GSDMM**, while the function itself is named **DMM**. The function can take 6 possible arguments, two of which are required, and the remaining 4 being optional. ### The required arguments are: * **corpus** - text file, which has been cleaned and loaded into Python. That is, the text should all be lowercase, all punctuation and numbers should have also been removed. * **nTopics** - the number of topics. ### The optional requirements are: * **alpha**, **beta** - these are the distribution specific parameters.(**The defaults for both of these parameters are 0.1.**) * **nTopWords** - number of top words per a topic.(**The default is 10.**) * **iters** - number of Gibbs sampler iterations.(**The default is 15.**) ## Output: The function provides several components of output, namely: * **psi** - topic x word matrix. * **theta** - document x topic matrix. * **topics** - the top words per topic. * **assignments** - the topic numbers of selected topics only, as well as the final topic assignments. * **Final k** - the final number of selected topics. * **coherence** - the coherence score, which is a performance measure. * **selected_theta** * **selected_psi** # GPM ## Function and class description: The class is named **GPM**, while the function itself is named **GPM**. The function can take 8 possible arguments, two of which are required, and the remaining 6 being optional. ### The required arguments are: * **corpus** - text file, which has been cleaned and loaded into Python. That is, the text should all be lowercase, all punctuation and numbers should have also been removed. * **nTopics** - the number of topics. ### The optional requirements are: * **alpha**, **beta** and **gam** - these are the distribution specific parameters.(**The defaults for these parameters are alpha = 0.001, beta = 0.001 and gam = 0.1 respectively.**) * **nTopWords** - number of top words per a topic.(**The default is 10.**) * **iters** - number of Gibbs sampler iterations.(**The default is 15.**) * **N** - this is a parameter used to normalize the document lengths, which is required for the Poisson model. ## Output: The function provides several components of output, namely: * **psi** - topic x word matrix. * **theta** - document x topic matrix. * **topics** - the top words per topic. * **assignments** - the topic numbers of selected topics only, as well as the final topic assignments. * **Final k** - the final number of selected topics. * **coherence** - the coherence score, which is a performance measure. * **selected_theta** * **selected_psi** # Example Usage: A more comprehensive [tutorial](https://github.com/CAIR-ZA/GPyM_TM/blob/master/Tutorial.ipynb) is also available. ### Installation; Run the following command within a Python command window: `pip install GPym_TM` ### Implementation; Import the package into the relevant python script, with the following: `from GSDMM import DMM` `from GPM import GPM` > Call the class: #### Possible examples of calling the GSDMM function are as follows: `data_DMM = GSDMM.DMM(corpus, nTopics)` `data_DMM = GSDMM.DMM(corpus, nTopics, alpha = 0.25, beta = 0.15, nTopWords = 12, iters =5)` #### Possible examples of calling the GPM function are as follows: `data_GPM = GPM.GPM(corpus, nTopics)` `data_GPM = GPM.GPM(corpus, nTopics, alpha = 0.002, beta = 0.03, gam = 0.06, nTopWords = 12, iters = 7, N = 8)` ### Results; The output obtained for the Dirichlet multinomial mixture model appears as follows: ![Post](/Images/Post.png) While, the output obtained for the Poisson model appears as follows: ![poisson](/Images/poisson.png) ## Built With: [Google Collab](https://colab.research.google.com/notebooks/intro.ipynb) - Web framework [Python](https://www.python.org/) - Programming language of choice [Pypi](https://pypi.org/) - Distribution ## Authors: [Jocelyn Mazarura](https://github.com/jrmazarura/GPM) ## Co-Authors: [Alta de Waal](https://github.com/altadewaal) [Ricardo Marques](https://github.com/RicSalgado) ## License: This project is licensed under the MIT License - see the LICENSE file for details. ## Acknowledgments: University of Pretoria ![Tuks Logo](/Images/UPlogohighres.jpg)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl GPyM-TM-3.0.1:

    pip install GPyM-TM-3.0.1.whl


نصب پکیج tar.gz GPyM-TM-3.0.1:

    pip install GPyM-TM-3.0.1.tar.gz