معرفی شرکت ها


GENIALbiologists-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

GENIAL: GENes Indentification with Abricate for Lucky biologists
ویژگی مقدار
سیستم عامل POSIX :: Linux
نام فایل GENIALbiologists-0.9.0
نام GENIALbiologists
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Pauline Barbet, Arnaud Felten
ایمیل نویسنده pauline.barbet@anses.fr, arnaud.felten@anses.fr
آدرس صفحه اصلی https://github.com/p-barbet/GENIAL
آدرس اینترنتی https://pypi.org/project/GENIALbiologists/
مجوز -
GENIAL : GENes Identification with Abricate for Lucky biologists ================================================================ Authors : Barbet Pauline, Felten Arnaud Affiliation: [Food Safety Laboratory - ANSES Maisons Alfort (France)](https://www.anses.fr/en/content/laboratory-food-safety-maisons-alfort-and-boulogne-sur-mer) You can find the latest version of the tool at [https://github.com/p-barbet/GENIAL](https://github.com/p-barbet/GENIAL) GENIAL ====== GENIAL aims to identify antimicrobial resistance and virulence genes from bacterial genomes matching them to a database gathering genes of interest using [ABRicate](https://github.com/tseemann/abricate). ### Databases Default databases available are ([Resfinder](https://cge.cbs.dtu.dk/services/ResFinder/), [CARD](https://card.mcmaster.ca/), [ARG-ANNOT](http://backup.mediterranee-infection.com/article.php?laref=282&titre=arg-annot), [NCBI](https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047), [EcOH](https://github.com/katholt/srst2/tree/master/data), [PlasmidFinder](https://cge.cbs.dtu.dk/services/PlasmidFinder/), [Ecoli_VF](https://github.com/phac-nml/ecoli_vf) and [VFDB](http://www.mgc.ac.cn/VFs/)) As well as this databes, it's posible to use your own database. The tool is divided into two scripts. ### GENIALanalysis GENIALanalysis aims to run ABricate. It takes in input a tsv file containing genomes fasta files paths and IDs.If you want to use your own database you also need to provide a multifasta whith genes IDs as headers. Then the script run ABricate and produce in output one ABRicate result file per genome, corresponding to a tsv file including genes found in each sample. ### GENIALresults GENIALresults aims to conditionning ABRicate results in the form of matrixes and heatmaps of presence/absence. It takes in input a temporary file produced by the Abricate analysis containing the genomes Abricate results paths and IDs. In the case of vfdb database a file containing the virulence factors names, their family and species is automticaly included in the script. The output depending on the database used : * In any cases a matrix in tsv format and a heatmap in png format with all genes found are created On top of that: * If you use one of the default databases [Resfinder](https://cge.cbs.dtu.dk/services/ResFinder/) or [VFDB](http://www.mgc.ac.cn/VFs/) news matrix and heatmap by gene type are produced with a correspondace table between the gene name, its family and its number in all genomes. * If you don't use one of the two previous databases or if you use your own database, only a corespondance table between the gene name and its number in all genomes is produced in addition. ![](workflow.PNG?raw=true "script workflow") Dependencies ============ The script has been developed with python 3.6 (tested with 3.6.6) ### External dependencies * [ABRicate](https://github.com/tseemann/abricate) tested with 0.8.7 * [Pandas](https://pandas.pydata.org/) tested with 0.23.4 * [seaborn](https://seaborn.pydata.org/installing.html) tested with 0.9.0 Parameters ========== ### Command line options | Options | Description | Required | Default | |:-----------:|:-------------------------------------------------------------------------------------------------------------------------------------:|:----------------------:|:----------------:| | -f | tsv file with FASTA files paths ans strains IDs | Yes | | | -dbp | Path to ABRicate databases repertory. Implies -dbf and --privatedb | Yes if --privatedb | | | -dbf | Multifasta containing the private database sequences. Implies -dbp and --privatedb | Yes if --privatedb | | | -T | Number of thread to use | No | 1 | | -w | Working directory | No | . | | -r | Results directory name | No | ABRicate_results | | --defaultdb | default databases available : resfinder, card, argannot, acoh, ecoli_vf, plasmidfinder, vfdb or ncbi. Incompatible with --privatedb | Yes if not --privatedb | | | --privatedb | Private database name. Implies -dbp and -dbf. Incompatible with --defaultdb | Yes if not --defaultdb | | | --mincov | Minimum proportion of gene covered | No | 80 | | --minid | Minimum proportion of exact nucleotide matches | No | 90 | | --R | Remove genes present in all genomes from the matrix | No | False | Test ==== After installing ABRicate and Pandas and seaborn you can test the script with the command line : ## Default database python AntiViruce.py -f input_file.tsv --defaultdb vfdb -r results_directory --minid 90 --mincov 80 ## Private database python AntiViruce.py -f input_file.tsv --privatedb private_db_name -T 10 -r results_directory --minid 90 --mincov 80 -dbp path_to_abricate_databases_repertory -dbf private_db_multifasta_path


نیازمندی

مقدار نام
- pandas
- seaborn
- biopython


نحوه نصب


نصب پکیج whl GENIALbiologists-0.9.0:

    pip install GENIALbiologists-0.9.0.whl


نصب پکیج tar.gz GENIALbiologists-0.9.0:

    pip install GENIALbiologists-0.9.0.tar.gz