معرفی شرکت ها


Fragmenstein-0.9.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Merging, linking and placing compounds by stitching them together like a reanimated corpse
ویژگی مقدار
سیستم عامل -
نام فایل Fragmenstein-0.9.9
نام Fragmenstein
نسخه کتابخانه 0.9.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Matteo Ferla
ایمیل نویسنده matteo.ferla@gmail.com
آدرس صفحه اصلی https://github.com/matteoferla/Fragmenstein
آدرس اینترنتی https://pypi.org/project/Fragmenstein/
مجوز MIT
# Fragmenstein Fragmenstein: Merging, linking and placing compounds by stitching bound compounds together like a reanimated corpse. [![Documentation Status](https://readthedocs.org/projects/fragmenstein/badge/?version=latest)](https://fragmenstein.readthedocs.io/en/latest/?badge=latest) [![ github forks matteoferla Fragmenstein?label=Fork&style=social](https://img.shields.io/github/forks/matteoferla/Fragmenstein?label=Fork&style=social&logo=github)](https://github.com/matteoferla/Fragmenstein) [![ github stars matteoferla Fragmenstein?style=social](https://img.shields.io/github/stars/matteoferla/Fragmenstein?style=social&logo=github)](https://github.com/matteoferla/Fragmenstein) [![ github watchers matteoferla Fragmenstein?label=Watch&style=social](https://img.shields.io/github/watchers/matteoferla/Fragmenstein?label=Watch&style=social&logo=github)](https://github.com/matteoferla/Fragmenstein) [![ github last-commit matteoferla Fragmenstein](https://img.shields.io/github/last-commit/matteoferla/Fragmenstein?logo=github)](https://github.com/matteoferla/Fragmenstein) [![ github license matteoferla Fragmenstein](https://img.shields.io/github/license/matteoferla/Fragmenstein?logo=github)](https://github.com/matteoferla/Fragmenstein/raw/master/LICENCE) [![ github release-date matteoferla Fragmenstein](https://img.shields.io/github/release-date/matteoferla/Fragmenstein?logo=github)](https://github.com/matteoferla/Fragmenstein) [![ github commit-activity m matteoferla Fragmenstein](https://img.shields.io/github/commit-activity/m/matteoferla/Fragmenstein?logo=github)](https://github.com/matteoferla/Fragmenstein) [![ github issues matteoferla Fragmenstein](https://img.shields.io/github/issues/matteoferla/Fragmenstein?logo=github)](https://github.com/matteoferla/Fragmenstein) [![ github issues-closed matteoferla Fragmenstein](https://img.shields.io/github/issues-closed/matteoferla/Fragmenstein?logo=github)](https://github.com/matteoferla/Fragmenstein) [![ pypi v fragmenstein](https://img.shields.io/pypi/v/fragmenstein?logo=python)](https://pypi.org/project/fragmenstein) [![ pypi pyversions fragmenstein](https://img.shields.io/pypi/pyversions/fragmenstein?logo=python)](https://pypi.org/project/fragmenstein) [![ pypi wheel fragmenstein](https://img.shields.io/pypi/wheel/fragmenstein?logo=python)](https://pypi.org/project/fragmenstein) [![ pypi format fragmenstein](https://img.shields.io/pypi/format/fragmenstein?logo=python)](https://pypi.org/project/fragmenstein) [![ pypi status fragmenstein](https://img.shields.io/pypi/status/fragmenstein?logo=python)](https://pypi.org/project/fragmenstein) [![ pypi dm fragmenstein](https://img.shields.io/pypi/dm/fragmenstein?logo=python)](https://pypi.org/project/fragmenstein) [![ codeclimate maintainability matteoferla Fragmenstein](https://img.shields.io/codeclimate/maintainability/matteoferla/Fragmenstein?logo=codeclimate)](https://codeclimate.com/github/matteoferla/Fragmenstein) [![ codeclimate issues matteoferla Fragmenstein](https://img.shields.io/codeclimate/issues/matteoferla/Fragmenstein?logo=codeclimate)](https://codeclimate.com/github/matteoferla/Fragmenstein) [![ codeclimate tech-debt matteoferla Fragmenstein](https://img.shields.io/codeclimate/tech-debt/matteoferla/Fragmenstein?logo=codeclimate)](https://codeclimate.com/github/matteoferla/Fragmenstein) | Name | Colab Link | PyRosetta | Description | | :--- | :--- | :---: | :--- | | Pipeline | [![colab demo](https://img.shields.io/badge/Run_full_demo-fragmenstein.ipynb-f9ab00?logo=googlecolab)](https://colab.research.google.com/github/matteoferla/Fragmenstein/blob/master/colab_fragmenstein.ipynb) | &#10004;| Given a template and a some hits, <br>merge them <br>and place the most similar purchasable analogues from Enamine REAL | | Light | [![colab demo](https://img.shields.io/badge/Run_light_demo-fragmenstein.ipynb-f9ab00?logo=googlecolab)](https://colab.research.google.com/github/matteoferla/Fragmenstein/blob/master/colab_playground.ipynb) | &#10060;| Generate molecules and see how they merge<br>and how a placed compound fairs| ![Ox](https://upload.wikimedia.org/wikipedia/en/thumb/2/2f/University_of_Oxford.svg/132px-University_of_Oxford.svg.png) For manuscript data see [manuscript data repository](https://github.com/matteoferla/Fragmenstein-manuscript-data) For authors see [Authors](#authors) ## Stitched molecules Fragmenstein can perform two different tasks. * **Combine** hits * **Place** a given followup molecule (SMILES) based on series of hits ![overview](images/overview.png) Like Frankenstein's creation it may violate the laws of chemistry. Trigonal planar topologies may be tetrahedral, bonds unnaturally long _etc._ This monstrosity is therefore then energy minimised with strong constraints within the protein. ## Classes There are four main classes —named after characters from the Fragmenstein book and movies: * `Monster` makes the stitched together molecules indepent of the protein — [documentation](documentation/monster/monster.md) * `Igor` uses PyRosetta to minimise in the protein the fragmenstein monster followup — [documentation](documentation/igor.md) * `Victor` is a pipeline that calls the parts, with several features, such as warhead switching —[documentation](documentation/victor.md) * `Laboratory` does all the combinatorial operations with Victor (specific case) NB. In the absence of `pyrosetta` (which requires an academic licence), all bar ``Igor`` work. Additionally, there are a few minor classes. One of these is ``mRMSD``, a multiple RMSD variant which does not superpose/align and bases which atoms to use on coordinates —[documentation](documentation/mrmsd.md) The class `Walton` performs geometric manipulations of compounds, to set them up to demonstrate features of Fragmenstein (like captain Walton, it does not partake in the plot, but is key to the narration) There are two module hosted elsewhere: * ``Rectifier`` from [molecular_rectifier](https://github.com/matteoferla/molecular_rectifier) is a class that corrects mistakes in the molecule automatically merged by ``Monster``. * ``Params`` from [rdkit to params module](https://github.com/matteoferla/rdkit_to_params) parameterises the ligands ### Combine It can also merge and link fragment hits by itself and find the best scoring mergers. For details about linking see [linking notes](documentation/linking.md). It uses the same overlapping position clustering, but also has a decent amount of impossible/uncommon chemistry prevention. Monster: ```python from fragmenstein import Monster monster = Monster(hits=[hits_a, hit_b]) monster.combine() monster.positioned_mol #: RDKit.Chem.Mol ``` Victor: ```python from fragmenstein import Victor import pyrosetta pyrosetta.init( extra_options='-no_optH false -mute all -ex1 -ex2 -ignore_unrecognized_res false -load_PDB_components false -ignore_waters false') victor = Victor(hits=[hits_a, hit_b], pdb_filename='foo.pdb', # or pdb_block='ATOM 1 MET ...' covalent_resi=1) # if not covalent, just put the first residue or something. victor.combine() victor.minimized_mol ``` The PyRosetta init step can be done with the helper function: ```python Igor.init_pyrosetta() ``` The two seem similar, but Victor places with Monster and minimises with Igor. As a result it has energy scores victor.ddG Fragmenstein is not really a docking algorithm as it does not find the pose with the **lowest energy** within a given volume. Consequently, it is a method to find how **faithful** is a given followup to the hits provided. Hence the minimised pose should be assessed by the RMSD metric or similar and the ∆∆G score used solely as a cutoff —lower than zero. For a large number of combination: ```python from fragmenstein import Laboratory lab = Laboratory(pdbblock=pdbblock, covalent_resi=None) combinations:pd.DataFrame = lab.combine(hits, n_cores=28) ``` ## Place Here is [an interactive example of placed molecules](https://michelanglo.sgc.ox.ac.uk/r/fragmenstein). It is rather tolerant to erroneous/excessive submissions (by automatically excluding them) and can energy minimise strained conformations. ![summary](images/new_summary.jpg) Three mapping approaches were tested, but the key is that hits are pairwise mapped to each other by means of one-to-one atom matching based upon position as opposed to similarity which is easily led astray. For example, note here that the benzene and the pyridine rings overlap, not the two pyridine rings: <img src="images/position_over_mcs.jpg" width="300px"> ### Examples Monster: ```python from fragmenstein import Monster monster = Monster(hits=[hits_a, hit_b]) monster.place_smiles('CCO') monster.positioned_mol ``` Victor: ```python from fragmenstein import Victor, Igor Igor.init_pyrosetta() victor = Victor(hits=[hits_a, hit_b], pdb_filename='foo.pdb') victor.place('CCO') victor.minimized_mol ``` For a lengthier example see [example notes](documentation/example.md) or [documentation](https://fragmenstein.readthedocs.io/en/latest/). ### Demo data Some demo data is provided in the `demo` submodule. ```python from fragmenstein.demo import MPro, Mac1 pdbblock: str = Mac1.get_template() for hitname in Mac1.get_hit_list(): Mac1.get_hit(hitname) ... ``` To use SAR-COV-2 MPro as a test bed, the following may be helpful: * `fragmenstein.MProVictor`, a derived class (of `Victor`), with various presents specific for MPro. * `fragemenstein.get_mpro_template()`, returns the PDB block (str) of MPro * `fragemenstein.get_mpro_molblock(xnumber)`, returns the mol block (str) of a MPro hit from Fragalysis * `fragemenstein.get_mpro_mol(xnumber)`, as above but returns a `Chem.Mol` instance. ## Other features * [Covalent hits](documentation/covalents.md) * [Logging](documentation/logging_and_debugging.md) ## Installation ### Fragmenstein and dependencies Python 3.6 or above. Install from pipy python -m pip install fragmenstein ### Requires Pyrosetta > :warning: PyRosetta no longer runs on CentOS 7 due to old kernel headers (cf. [blog post](https://blog.matteoferla.com/2022/11/glibc-236-vs-centos-7-tale-of-failure.html)). Pyrosetta requires a password to be downloaded (academic licence) obtained by https://els2.comotion.uw.edu/product/pyrosetta. This is a different licence from the Rosetta one. The username of the Rosetta binaries is formatted variant of "academic user", while the PyRosetta is the name of a researcher whose name bares an important concept in protein folding, like boltzmann + constant (but is not that). Pyrosetta can be downloaded via a browser from http://www.pyrosetta.org/dow. Or in the terminal via: ```bash curl -u 👾👾👾:👾👾👾https://graylab.jhu.edu/download/PyRosetta4/archive/release/PyRosetta4.Release.python38.linux/PyRosetta4.Release.python38.linux.release-NNN.tar.bz2 -o a.tar.bz2 tar -xf a.tar.bz2 cd PyRosetta4.Release.python38.linux sudo pip3 install . ``` or using conda or using `install_pyrosetta` from the `pyrosetta-help` package. ```bash pip install pyrosetta-help PYROSETTA_USERNAME=👾👾👾 PYROSETTA_PASSWORD=👾👾👾 install_pyrosetta ``` The `PYROSETTA_USERNAME` and `PYROSETTA_PASSWORD` are environment variables, which should not be shared publicly (i.e. store them as private environmental variables in your target application). ## Origin > See [Fragmenstein and COVID moonshot](documentation/covid.md). Fragmenstein was created to see how reasonable are the molecules of fragment mergers submitted in [the COVID moonshot project](https://discuss.postera.ai/c/covid), because after all the underlying method is fragment based screening. [This dataset](https://github.com/postera-ai/COVID_moonshot_submissions) has some unique peculiarities that potentially are not encountered in other projects. ## Command line interface The strength of Fragmenstein is as a python module, but there is a command line interface. ```bash fragmenstein monster combine -i hit1.mol hit2.mol >> combo.mol fragmenstein monster place -i hit1.mol hit2.mol -s 'CCO' >> placed.mol fragmenstein victor combine -i hit1.mol hit2.mol -t protein.pdb -o output >> combo.mol fragmenstein victor combine -i hit1.mol hit2.mol -s 'NCO' -n molname -t protein.pdb -o output >> placed.mol fragmenstein laboratory combine -i hits.sdf -o output -d output.csv -s output.sdf -c 24 ``` ## Authors | Author | Role | Homepage | Department | Badges | |:---------------------|:------------------------|:------------------------------------------------------|:---------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Matteo Ferla | main developer | [WCHG](https://www.well.ox.ac.uk/people/matteo-ferla) | Wellcome Centre for Human Genetics, University of Oxford | [![https img shields io badge orcid 0000 0002 5508 4673 a6ce39 logo orcid](https://img.shields.io/badge/orcid-0000--0002--5508--4673-a6ce39?logo=orcid)](https://orcid.org/0000--0002--5508--4673) [![https img shields io badge google scholar gF bp_cAAAAJ success logo googlescholar](https://img.shields.io/badge/google--scholar-gF--bp_cAAAAJ-success?logo=googlescholar)](https://scholar.google.com/citations?user=gF--bp_cAAAAJ&hl=en) [![https img shields io twitter follow matteoferla label Follow logo twitter](https://img.shields.io/twitter/follow/matteoferla?label=Follow&logo=twitter)](https://twitter.com/matteoferla) [![https img shields io stackexchange stackoverflow r 4625475 logo stackoverflow](https://img.shields.io/stackexchange/stackoverflow/r/4625475?logo=stackoverflow)](https://stackoverflow.com/users/4625475) [![https img shields io stackexchange bioinformatics r 6322 logo stackexchange](https://img.shields.io/stackexchange/bioinformatics/r/6322?logo=stackexchange)](https://bioinformatics.stackexchange.com/users/6322) [![https img shields io badge email gmail informational logo googlemail](https://img.shields.io/badge/email-gmail-informational&logo=googlemail)](https://mailhide.io/e/Ey3RNO2G) [![https img shields io badge email Oxford informational logo googlemail](https://img.shields.io/badge/email-Oxford-informational&logo=googlemail)](https://mailhide.io/e/Y1dbgyyE) | | Rubén Sánchez-Garcia | discussion/code | Stats | Department of Statistics, University of Oxford | [![https img shields io badge orcid 0000 0001 6156 3542 a6ce39 logo orcid](https://img.shields.io/badge/orcid-0000--0001--6156--3542-a6ce39?logo=orcid)](https://orcid.org/0000--0001--6156--3542) [![https img shields io badge google scholar MplGOMAAAAJ success logo googlescholar](https://img.shields.io/badge/google--scholar-MplGOMAAAAJ-success?logo=googlescholar)](https://scholar.google.com/citations?user=MplGOMAAAAJ&hl=en) | | Rachael Skyner | discussion/editing/code ||| | Stefan Gahbauer | discussion ||| | Jenny Taylor | PI | [WCHG](https://www.well.ox.ac.uk/people/jenny-taylor) | Wellcome Centre for Human Genetics, University of Oxford | [![https img shields io badge orcid 0000 0003 3602 5704 a6ce39 logo orcid](https://img.shields.io/badge/orcid-0000--0003--3602--5704-a6ce39?logo=orcid)](https://orcid.org/0000--0003--3602--5704) | | Brian Marsden | PI | [CMD](https://www.cmd.ox.ac.uk/team/brian-marsden) | CMD, Oxford | [![https img shields io badge orcid 0000 0002 1937 4091 a6ce39 logo orcid](https://img.shields.io/badge/orcid-0000--0002--1937--4091-a6ce39?logo=orcid)](https://orcid.org/0000--0002--1937--4091) [![https img shields io badge google scholar mCPM7bAAAAAJ success logo googlescholar](https://img.shields.io/badge/google--scholar-mCPM7bAAAAAJ-success?logo=googlescholar)](https://scholar.google.com/citations?user=mCPM7bAAAAAJ&hl=en) [![https img shields io twitter follow bmarsden19 label Follow logo twitter](https://img.shields.io/twitter/follow/bmarsden19?label=Follow&logo=twitter)](https://twitter.com/bmarsden19) | | Charlotte Deane | PI ||| | Frank von Delft | PI | [CMD](https://www.ndm.ox.ac.uk/team/frank-von-delft) | Diamond Lightsource / CMD, Oxford | [![https img shields io badge orcid 0000 0003 0378 0017 a6ce39 logo orcid](https://img.shields.io/badge/orcid-0000--0003--0378--0017-a6ce39?logo=orcid)](https://orcid.org/0000--0003--0378--0017) [![https img shields io badge google scholar uZpTG1kAAAAJ success logo googlescholar](https://img.shields.io/badge/google--scholar-uZpTG1kAAAAJ-success?logo=googlescholar)](https://scholar.google.com/citations?user=uZpTG1kAAAAJ&hl=en) [![https img shields io twitter follow FrankvonDelft label Follow logo twitter](https://img.shields.io/twitter/follow/FrankvonDelft?label=Follow&logo=twitter)](https://twitter.com/FrankvonDelft) | ## See Also * ChemRXiv preprint — TBA * Steph Wills's [fragment network merges repo](https://github.com/stephwills/fragment_network_merges) contains useful filtering algorithms * Fragmenstein is used in Schuller et. al. 2021 [![SCHULLER et al](https://img.shields.io/badge/doi-10.1126%2Fsciadv.abf8711-fcb426)](https://doi.org/10.1126%2Fsciadv.abf8711) * Figures for the upcoming manuscript are in a separate [repo](https://github.com/matteoferla/Fragmenstein-manuscript-data) * The conversion of a rdkit Chem.Mol that cannot be sanitised to an analogue that can is done by the [molecular rectifier package](https://github.com/matteoferla/molecular_rectifier) * The conversion of a rdkit Chem.Mol to a PyRosetta residue type (a "params file") is done via the [rdkit-to-params package](https://github.com/matteoferla/rdkit_to_params) * The pipeline demo colab notebook uses Brian Shoichet's [SmallWorld webapp](https://sw.docking.org/), interfaced via [its API in Python](https://github.com/matteoferla/Python_SmallWorld_API) * The playground demo colab notebook features a [JSME widget](https://github.com/matteoferla/JSME_notebook_hack) — [JSME](http://www.jcheminf.com/content/5/1/24) is a popular JS only molecular editor


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl Fragmenstein-0.9.9:

    pip install Fragmenstein-0.9.9.whl


نصب پکیج tar.gz Fragmenstein-0.9.9:

    pip install Fragmenstein-0.9.9.tar.gz