معرفی شرکت ها


FileBacked-2.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Simple file-backed HDF5 storage for Python objects
ویژگی مقدار
سیستم عامل -
نام فایل FileBacked-2.1.0
نام FileBacked
نسخه کتابخانه 2.1.0
نگهدارنده ['Eivind Fonn']
ایمیل نگهدارنده ['evfonn@gmail.com']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/TheBB/FileBacked
آدرس اینترنتی https://pypi.org/project/FileBacked/
مجوز -
========== FileBacked ========== .. image:: https://badge.fury.io/py/FileBacked.svg :target: https://badge.fury.io/py/FileBacked .. image:: https://travis-ci.org/TheBB/FileBacked.svg?branch=master :target: https://travis-ci.org/TheBB/FileBacked The FileBacked library allows you to easily define complex Python types which can be saved to disk in a format that is efficient, inspectable and interfaceable outside of Python. While pickling is generally quite reliable for storing Python objects on disk, it cannot truly function as an interface format for other languages, and it is also not secure and stable enough to be used for anything other than storing and reading your own files. FileBacked works by storing objects in HDF5 format. This is ideal for numpy arrays, but also works well for most of the other standard Python types. How it works ------------ Define a class with attributes that are backed by disk storage. .. code-block:: python from filebacked import FileBacked class MyClass(FileBacked): myint: int myobj = MyClass() myobj.myint = 1 The type and name of the attribute will influence the format of the resulting HDF5 file. Let us save the object. .. code-block:: python import h5py with h5py.File('myfile.hdf5', 'w') as f: myobj.write(f) The resulting file should have a root dataset named 'myint', a scalar with value 1. And now let us read it again. .. code-block:: python with h5py.File('myfile.hdf5', 'r') as f: newobj = MyClass.read(f) assert newobj.myint == 1 Supported types --------------- The following types are supported: - Scalar numbers (*int*, *float* and numpy scalar types) - Strings (*str*) - Numpy arrays (``numpy.ndarray``) - Scipy sparse matrices (``scipy.sparse.spmatrix``) of CSR, CSC and COO type (although you are free to give the type hint as the general *spmatrix* superclass) - Homogeneous tuples (``Tuple[eltype, ...]``) and lists (``List[eltype]``) where the element type is supported - Dictionaries (``Dict[keytype, valuetype]``) where the key and value types are supported - Option types (``Option[valuetype]``) where the value type is supported - Union types with arguments that support type checking with ``isinstance(..., arg)`` - Subclasses of ``FileBacked`` and ``FileBackedDict[keytype, valuetype]`` Arbitrary Python objects are stored as pickled strings if the *allow_pickle* keyword argument is passed to the *write* and *read* methods, respectively, or if the type is ``object``. Types can be specified using standard builtins or type hint objects from the *typing* module, as above. To add support for a custom type, create a new *Filter* subclass: .. code-block:: python from filebacked import Filter, register_filter class MyFilter(Filter): def applicable(self, tp): # Return true if the filter can be used for objects of the # given type. def write(self, group, name, obj, tp, **kwargs): # Write the object to the given group as a subgroup or # dataset with the given name. def read(self, group, tp, **kwargs): # Read the object from the given group or dataset and # return it. register_filter(MyFilter()) Newly registered filters will take priority over existing filters. Interface --------- For writing subclasses of *FileBacked* or *FileBackedDict*, it is most useful to use the following pattern. In this case, you cannot write more than one object to a file, or you risk overlapping attributes. .. code-block:: python with h5py.File('myfile.hdf5', 'w') as f: myobj.write(f) Alternatively, use the *write* function for arbitrary objects of supported type. In this case you must specify a name and optionally a type for the object. It is recommended to always specify the type, because element types of generic objects cannot be deduced from the object alone. .. code-block:: python with h5py.File('myfile.hdf5', 'w') as f: filebacked.write(f, 'somename', 3, int) The *write* function will detect subclasses of *FileBacked* or *FileBackedDict* and delegate writing accordingly, and the *write* method of those two classes will delegate writing of attributes to the *write* function. All the write functions take an arbitrary amount of keyword arguments that are passed throughout the object reference tree. You can use this to customize writing behaviour. For example, the ``FileBacked.write`` and ``FileBackedDict.write`` methods accept the keyword arguments *only* and *skip*, to avoid writing some attributes if necessary: .. code-block:: python class MyClass(FileBacked): small: int large: np.ndarray def write(self, group, sparse=False, **kwargs): if sparse: super().write(group, skip=('small',), **kwargs) else: super().write(group, **kwargs) Ignoring attributes ^^^^^^^^^^^^^^^^^^^ By default, subclasses of ``FileBacked`` will handle any attributes with type annotations. If you want some to be ignored, list them in the special ``__filebacked_ignore__`` attribute: .. code-block:: python class MyClass(FileBacked): __filebacked_ignore__ = ('will_not_be_saved',) will_be_saved: int will_not_be_saved: str Lazy reading ^^^^^^^^^^^^ Read functions accept an optional *lazy* parameter that can activate lazy reading. In this case, when possible, objects will only be read from disk when accessed. This is possible for attributes of *FileBacked* objects, and for *FileBackedDict* objects whose keys are integers or strings. All builtin Python types are read eagerly. Note that when using lazy reading, it is imperative that the file object is kept open for as long necessary to allow objects to be read on demand. When using eager reading, the file object may be closed immediately after the *read* call. File objects ^^^^^^^^^^^^ The standard Python package for HDF5 is h5py. However, FileBacked does not itself require h5py or depend on it. Any HDF5 package with a compatible interface, such as pyfive, should work. Initialization ^^^^^^^^^^^^^^ When subclassing *FileBacked* and *FileBackedDict*, it is necessary to call the superclass constructor before accessing any of the attributes or keys that are managed by files (in the case of *FileBackedDict*, that means any keys at all). Upon reading an object from a file, the constructor will not be called as it otherwise would. Instead, the ``__pyinit__`` method will be called, with no arguments, both when constructing an object normally *and* when reading it from the file. You can use this method to perform extra object initialization if required, such as assigning attributes which are not file-backed. Caution ------- Unlike pickle, FileBacked will not maintain reference equality between objects. If the same (mutable) object is referenced more than once in the reference graph, it will instantiate as two different mutable objects upon reading. For the same reason, circular references will cause problems. FileBacked uses type hints to determine the structure of the resulting HDF5 file. It does not prevent you from assigning objects with incorrect types.


نحوه نصب


نصب پکیج whl FileBacked-2.1.0:

    pip install FileBacked-2.1.0.whl


نصب پکیج tar.gz FileBacked-2.1.0:

    pip install FileBacked-2.1.0.tar.gz