معرفی شرکت ها


FeLS-1.4.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fetch Landsat & Sentinel Data from google cloud
ویژگی مقدار
سیستم عامل -
نام فایل FeLS-1.4.0
نام FeLS
نسخه کتابخانه 1.4.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده vascobnunes
ایمیل نویسنده vascobnunes@gmail.com
آدرس صفحه اصلی https://github.com/vascobnunes/fetchLandsatSentinelFromGoogleCloud
آدرس اینترنتی https://pypi.org/project/FeLS/
مجوز GPL
# FeLS - Fetch Landsat & Sentinel Data from Google Cloud Find and download Landsat and Sentinel-2 data from the public Google Cloud The script downloads the index.csv file listing all available Landsat or Sentinel-2 tiles, then searches the file for one scene that matches user parameters. Once found, it downloads the image files. Small demo video: https://youtu.be/8zCs0nxl-rU Developed with/for Python 2.7 and 3.3+ You may either install the package through pip: ``` pip install fels ``` or if using a conda environment, the following steps are recommended to create and install dependencies: ``` conda create --name fetchLSGC python=3 ``` Switch to the new environment (`source activate fetchLSGC` in Linux), and install the gdal dependency from conda-forge ``` conda config --add channels conda-forge conda install gdal ``` ## Examples ### LINUX ``` fels OLI_TIRS 2015-01-01 2015-06-30 -s 203031 -c 30 -o ~/LANDSAT --latest --outputcatalogs /tmp ``` ``` fels S2 2016-10-01 2016-12-31 -s 44UPU -o ~/SENTINEL2 -l --outputcatalogs /tmp ``` You can also use GeoJSON geometry to perform a search: ``` fels OLI_TIRS 2015-01-01 2015-06-30 -g '{"type":"Polygon","coordinates":[[[-122.71,37.54],[-122.71,37.90],[-121.99,37.90],[-121.99,37.54],[-122.71,37.54]]]}' -c 30 -o ~/LANDSAT --latest --outputcatalogs /tmp ``` or you can use Well Known Text (WKT) geometry: ``` fels OLI_TIRS 2015-01-01 2015-06-30 -g 'POINT (-105.2705 40.015)' -c 30 -o ~/LANDSAT --latest --outputcatalogs /tmp ``` ### WINDOWS ``` fels OLI_TIRS 2015-01-01 2015-06-30 -s 203031 -c 30 -o %TEMP%\LANDSAT --latest --outputcatalogs %TEMP%\LANDSAT ``` ``` fels S2 2016-10-01 2016-12-31 -s 44UPU -o %TEMP%\SENTINEL2 -l --outputcatalogs %TEMP%\SENTINEL2 ``` ### PYTHON You can use the Python entrypoint `fels.run_fels` in the same way as the `fels` executable: ```python # these commands are equivalent # CLI import os os.system(('fels OLI_TIRS 2015-01-01 2015-06-30 -c 30 -o . -g "POINT (-105.2705 40.015)"' '--latest --outputcatalogs ~/data/fels/')) os.system(('fels OLI_TIRS 2015-01-01 2015-06-30 -c 30 -o . -g \'{"type":"Point","coordinates":[-105.2705, 40.015]}\'' '--latest --outputcatalogs ~/data/fels/')) # python from fels import run_fels urls = run_fels(None, 'OLI_TIRS', '2015-01-01', '2015-06-30', cloudcover=30, output='.', geometry='POINT (-105.2705 40.015)', latest=True, outputcatalogs=os.path.expanduser('~/data/fels/')) print(urls) # python with friendly aliases from datetime import date urls = run_fels(None, 'L8', date(2015, 1, 1), date(2015, 6, 30), cloudcover=30, output='.', geometry={'type': 'Point', 'coordinates': [-105.2705, 40.015]}, latest=True, outputcatalogs=os.path.expanduser('~/data/fels/')) print(urls) ``` and import other useful utilities like: ```python fels.safedir_to_datetime fels.landsatdir_to_date fels.convert_wkt_to_scene ``` ## Usage Run the script with `-h` switch for parameters: ``` usage: fels [-h] [-g GEOMETRY] [-c CLOUDCOVER] [-o OUTPUT] [-e EXCLUDEPARTIAL] [--latest] [--noinspire] [--outputcatalogs OUTPUTCATALOGS] [--overwrite] [-l] [-d] [-r] [scene] {TM,ETM,OLI_TIRS,S2} start_date end_date Find and download Landsat and Sentinel-2 data from the public Google Cloud positional arguments: scene WRS2 coordinates for Landsat (ex 198030) or MGRS for S2 (ex 52SDG). Mutually exclusive with --geometry {TM,ETM,OLI_TIRS,S2} Which satellite are you looking for start_date Start date, in format YYYY-MM-DD. Left-exclusive. end_date End date, in format YYYY-MM-DD. Right-exclusive. optional arguments: -h, --help show this help message and exit -g GEOMETRY, --geometry GEOMETRY Geometry to run search. Must be valid GeoJSON `geometry` or Well Known Text (WKT). This is only used if --scene is blank. -i, --includeoverlap If -g is used, include scenes that overlap the geometry but do not completely contain it -c CLOUDCOVER, --cloudcover CLOUDCOVER Set a limit to the cloud cover of the image -o OUTPUT, --output OUTPUT Where to download files -e EXCLUDEPARTIAL, --excludepartial EXCLUDEPARTIAL Exclude partial tiles - only for Sentinel-2 --latest Limit to the latest scene --noinspire Do not rename output image folder to the title collected from the inspire.xml file (only for S2 datasets) --outputcatalogs OUTPUTCATALOGS Where to download metadata catalog files --overwrite Overwrite files if existing locally -l, --list List available download urls and exit without downloading -d, --dates List or return dates instead of download urls -r, --reject_old For S2, skip redundant old-format (before Nov 2016) images ``` You can read more about the public google access to Landsat and Sentinel-2 data here: https://cloud.google.com/storage/docs/public-datasets/ Contributors (THANK YOU!): - https://github.com/framioco - https://github.com/bendv - https://github.com/GreatEmerald


نیازمندی

مقدار نام
- numpy
- requests
- shapely
- geopandas


نحوه نصب


نصب پکیج whl FeLS-1.4.0:

    pip install FeLS-1.4.0.whl


نصب پکیج tar.gz FeLS-1.4.0:

    pip install FeLS-1.4.0.tar.gz