معرفی شرکت ها


FastBLEU-0.0.41


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A fast multithreaded C++ implementation of nltk BLEU.
ویژگی مقدار
سیستم عامل -
نام فایل FastBLEU-0.0.41
نام FastBLEU
نسخه کتابخانه 0.0.41
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Danial Alihosseini
ایمیل نویسنده danial.alihosseini@gmail.com
آدرس صفحه اصلی https://github.com/Danial-Alh/fast-bleu
آدرس اینترنتی https://pypi.org/project/FastBLEU/
مجوز OSI Approved :: MIT License
# CAUTION This package is renamed to [**"fast-bleu"**](https://pypi.org/project/fast-bleu/). Please check the [**new package**](https://pypi.org/project/fast-bleu/) to get updated versions. # FastBLEU Package (DEPRECATED) This is a fast multithreaded C++ implementation of NLTK BLEU; computing BLEU and SelfBLEU score for a fixed reference set. It can return (Self)BLEU for different (max) n-grams simultaneously and efficiently (e.g. BLEU-2, BLEU-3 and etc.). ## Installation PyPI latest stable release ~~~~~~~~~~~~~~~~~~~~~~~~ pip install --user FastBLEU ~~~~~~~~~~~~~~~~~~~~~~~~ ## Sample Usage Here is an example to compute BLEU-2, BLEU-3, SelfBLEU-2 and SelfBLEU-3: ```python >>> from fast_bleu import BLEU, SelfBLEU >>> ref1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'military', 'will', 'forever', ... 'heed', 'Party', 'commands'] >>> ref2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'military', 'forces', 'always', ... 'being', 'under', 'the', 'command', 'of', 'the', 'Party'] >>> ref3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'army', 'always', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'party'] >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'military', 'always', ... 'obeys', 'the', 'commands', 'of', 'the', 'party'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> list_of_references = [ref1, ref2, ref3] >>> hypotheses = [hyp1, hyp2] >>> weights = {'bigram': (1/2., 1/2.), 'trigram': (1/3., 1/3., 1/3.)} >>> bleu = BLEU(list_of_references, weights) >>> bleu.get_score(hypotheses) {'bigram': [0.7453559924999299, 0.0191380231127159], 'trigram': [0.6240726901657495, 0.013720869575946234]} ``` which means: * BLEU-2 for hyp1 is 0.7453559924999299 * BLEU-2 for hyp2 is 0.0191380231127159 * BLEU-3 for hyp1 is 0.6240726901657495 * BLEU-3 for hyp2 is 0.013720869575946234 ```python >>> self_bleu = SelfBLEU(list_of_references, weights) >>> self_bleu.get_score() {'bigram': [0.25819888974716115, 0.3615507630310936, 0.37080992435478316], 'trigram': [0.07808966062765045, 0.20140620205719248, 0.21415334758254043]} ``` which means: * SelfBLEU-2 for ref1 is 0.25819888974716115 * SelfBLEU-2 for ref2 is 0.3615507630310936 * SelfBLEU-2 for ref3 is 0.37080992435478316 * SelfBLEU-3 for ref1 is 0.07808966062765045 * SelfBLEU-3 for ref2 is 0.20140620205719248 * SelfBLEU-3 for ref3 is 0.21415334758254043 **Caution** Each token of reference set is converted to string format during computation. For further details, refer to the documentation provided in the source codes. # Citation Please cite our paper if it helps with your research. * ACL Anthology: https://www.aclweb.org/anthology/W19-2311 * Arxiv link: https://arxiv.org/abs/1904.03971 ```latex @inproceedings{alihosseini-etal-2019-jointly, title = {Jointly Measuring Diversity and Quality in Text Generation Models}, author = {Alihosseini, Danial and Montahaei, Ehsan and Soleymani Baghshah, Mahdieh}, booktitle = {Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation}, month = {jun}, year = {2019}, address = {Minneapolis, Minnesota}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W19-2311}, doi = {10.18653/v1/W19-2311}, pages = {90--98}, } ```


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl FastBLEU-0.0.41:

    pip install FastBLEU-0.0.41.whl


نصب پکیج tar.gz FastBLEU-0.0.41:

    pip install FastBLEU-0.0.41.tar.gz