معرفی شرکت ها


FLAML-1.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A fast library for automated machine learning and tuning
ویژگی مقدار
سیستم عامل OS Independent
نام فایل FLAML-1.0.9
نام FLAML
نسخه کتابخانه 1.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Microsoft Corporation
ایمیل نویسنده hpo@microsoft.com
آدرس صفحه اصلی https://github.com/microsoft/FLAML
آدرس اینترنتی https://pypi.org/project/FLAML/
مجوز -
[![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML) ![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml) [![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml) ![Python Version](https://img.shields.io/badge/3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue) [![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml) [![Join the chat at https://gitter.im/FLAMLer/community](https://badges.gitter.im/FLAMLer/community.svg)](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) # A Fast Library for Automated Machine Learning & Tuning <p align="center"> <img src="https://github.com/microsoft/FLAML/blob/main/website/static/img/flaml.svg" width=200> <br> </p> :fire: **Update (2022/08): We will give a [hands-on tutorial on FLAML at KDD 2022](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on 08/16/2022.** ## What is FLAML FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. It can also be used to tune generic hyperparameters for MLOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on. 1. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classifcal machine learning models and deep neural networks. 1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code). 1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm) and learner selection method invented by Microsoft Research. FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience. ## Installation ### Python FLAML requires **Python version >= 3.7**. It can be installed from pip: ```bash pip install flaml ``` To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook), install flaml with the [notebook] option: ```bash pip install flaml[notebook] ``` ### .NET Use the following guides to get started with FLAML in .NET: - [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022) - [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows) - [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0-preview.22313.1) ## Quickstart * With three lines of code, you can start using this economical and fast AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML). ```python from flaml import AutoML automl = AutoML() automl.fit(X_train, y_train, task="classification") ``` * You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space). ```python automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"]) ``` * You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function). ```python from flaml import tune tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600) ``` * [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task. ```python from flaml.default import LGBMRegressor # Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor. estimator = LGBMRegressor() # The hyperparameters are automatically set according to the training data. estimator.fit(X_train, y_train) ``` ## Documentation You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples. In addition, you can find: - [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML. - Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research). - FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ). - Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute). - ML.NET documentation and tutorials for [Model Builder](https://docs.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://github.com/dotnet/csharp-notebooks/blob/main/machine-learning/03-Training%20and%20AutoML.ipynb). ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>. If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.


نیازمندی

مقدار نام
>=1.17.0rc1 NumPy
>=2.3.1 lightgbm
>=0.90 xgboost
>=1.4.1 scipy
>=1.1.4 pandas
>=0.24 scikit-learn
- azureml-mlflow
>=0.26 catboost
==5.8.0 psutil
==1.3.3 xgboost
==2.8.0 optuna
>=0.26 catboost
<0.14 holidays
>=1.0.1 prophet
>=0.12.2 statsmodels
==0.1.10 hcrystalball
>=0.9.0 pytorch-forecasting
==4.18 transformers[torch]
- datasets
- nltk
- rouge-score
- seqeval
- nni
==0.10.2 openml
- jupyter
- matplotlib
- rgf-python
>=0.26 catboost
~=1.13 ray[tune]
>=3.8.4 flake8
>=6.1.1 pytest
>=5.3 coverage
- pre-commit
>=0.26 catboost
- rgf-python
==2.8.0 optuna
- openml
>=0.12.2 statsmodels
==5.8.0 psutil
- dataclasses
==4.18 transformers[torch]
- datasets
- nltk
- rouge-score
==0.1.10 hcrystalball
- seqeval
>=0.9.0 pytorch-forecasting
<0.14 holidays
>=1.0.1 prophet
>=0.12.2 statsmodels
==0.1.10 hcrystalball
<9.0.0,>=8.10.0 vowpalwabbit


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl FLAML-1.0.9:

    pip install FLAML-1.0.9.whl


نصب پکیج tar.gz FLAML-1.0.9:

    pip install FLAML-1.0.9.tar.gz