معرفی شرکت ها


FAT-Forensics-0.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python Toolbox for Algorithmic Fairness, Accountability and Transparency
ویژگی مقدار
سیستم عامل -
نام فایل FAT-Forensics-0.1.2
نام FAT-Forensics
نسخه کتابخانه 0.1.2
نگهدارنده ['Kacper Sokol']
ایمیل نگهدارنده ['k.sokol@bristol.ac.uk']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://fat-forensics.org/
آدرس اینترنتی https://pypi.org/project/FAT-Forensics/
مجوز new BSD
.. -*- mode: rst -*- ============= ================================================================ Software |Licence|_ |GitHubRelease|_ |PyPi|_ |Python35|_ Docs |Homepage|_ CI |GitHubTests|_ |GitHubDocs|_ |Codecov|_ Try it |Binder|_ Contact |MailingList|_ |Gitter|_ Cite |BibTeX|_ |JOSS|_ |ZENODO|_ ============= ================================================================ .. |Licence| image:: https://img.shields.io/github/license/fat-forensics/fat-forensics.svg .. _Licence: https://github.com/fat-forensics/fat-forensics/blob/master/LICENCE .. |GitHubRelease| image:: https://img.shields.io/github/release/fat-forensics/fat-forensics.svg .. _GitHubRelease: https://github.com/fat-forensics/fat-forensics/releases .. |PyPi| image:: https://img.shields.io/pypi/v/fat-forensics.svg .. _PyPi: https://pypi.org/project/fat-forensics/ .. |Python35| image:: https://img.shields.io/badge/python-3.5-blue.svg .. _Python35: https://badge.fury.io/py/fat-forensics .. .. |ReadTheDocs| image:: https://readthedocs.org/projects/fat-forensics/badge/?version=latest&style=flat .. .. _ReadTheDocs: https://fat-forensics.readthedocs.io/en/latest/ .. |Homepage| image:: https://img.shields.io/badge/homepage-read-green.svg .. _Homepage: https://fat-forensics.org .. What about wiki? .. |GitHubTests| image:: https://github.com/fat-forensics/fat-forensics/actions/workflows/tests.yml/badge.svg .. _GitHubTests: https://github.com/fat-forensics/fat-forensics/actions/workflows/tests.yml .. |GitHubDocs| image:: https://github.com/fat-forensics/fat-forensics/actions/workflows/docs.yml/badge.svg .. _GitHubDocs: https://github.com/fat-forensics/fat-forensics/actions/workflows/docs.yml .. .. |CircleCI| image:: https://circleci.com/gh/fat-forensics/fat-forensics/tree/master.svg?style=shield .. .. _CircleCI: https://circleci.com/gh/fat-forensics/fat-forensics/tree/master .. |Codecov| image:: https://codecov.io/gh/fat-forensics/fat-forensics/branch/master/graph/badge.svg .. _Codecov: https://codecov.io/gh/fat-forensics/fat-forensics .. https://codeclimate.com/ .. https://requires.io/ .. |Binder| image:: https://mybinder.org/badge_logo.svg .. _Binder: https://mybinder.org/v2/gh/fat-forensics/fat-forensics-doc/master?filepath=notebooks .. |MailingList| image:: https://img.shields.io/badge/mailing%20list-Google%20Groups-green.svg .. _MailingList: https://groups.google.com/forum/#!forum/fat-forensics .. |Gitter| image:: https://img.shields.io/gitter/room/fat-forensics/FAT-Forensics.svg .. _Gitter: https://gitter.im/fat-forensics .. |BibTeX| image:: https://img.shields.io/badge/cite-BibTeX-blue.svg .. _BibTeX: https://fat-forensics.org/getting_started/cite.html .. |JOSS| image:: https://joss.theoj.org/papers/10.21105/joss.01904/status.svg .. _JOSS: https://doi.org/10.21105/joss.01904 .. |ZENODO| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3833199.svg .. _ZENODO: https://doi.org/10.5281/zenodo.3833199 ============================================================================ FAT Forensics: Algorithmic Fairness, Accountability and Transparency Toolbox ============================================================================ FAT Forensics (``fatf``) is a Python toolbox for evaluating fairness, accountability and transparency of predictive systems. It is built on top of SciPy_ and NumPy_, and is distributed under the 3-Clause BSD license (new BSD). FAT Forensics implements the state of the art *fairness*, *accountability* and *transparency* (FAT) algorithms for the three main components of any data modelling pipeline: *data* (raw data and features), predictive *models* and model *predictions*. We envisage two main use cases for the package, each supported by distinct features implemented to support it: an interactive *research mode* aimed at researchers who may want to use it for an exploratory analysis and a *deployment mode* aimed at practitioners who may want to use it for monitoring FAT aspects of a predictive system. Please visit the project's web site `https://fat-forensics.org`_ for more details. Installation ============ Dependencies ------------ FAT Forensics requires **Python 3.5** or higher and the following dependencies: +------------+------------+ | Package | Version | +============+============+ | NumPy_ | >=1.10.0 | +------------+------------+ | SciPy_ | >=0.13.3 | +------------+------------+ In addition, some of the modules require *optional* dependencies: +--------------------------------------------------------------+------------------+------------+ | ``fatf`` module | Package | Version | +==============================================================+==================+============+ | ``fatf.transparency.predictions.surrogate_explainers`` | | | +--------------------------------------------------------------+ | | | ``fatf.transparency.predictions.surrogate_image_explainers`` | | | +--------------------------------------------------------------+ | | | ``fatf.transparency.sklearn`` | `scikit-learn`_ | >=0.19.2 | +--------------------------------------------------------------+ | | | ``fatf.utils.data.feature_selection.sklearn`` | | | +--------------------------------------------------------------+------------------+------------+ | ``fatf.transparency.predictions.surrogate_image_explainers`` | | | +--------------------------------------------------------------+ | | | ``fatf.utils.data.occlusion`` | `scikit-image`_ | >=0.17.0 | +--------------------------------------------------------------+ | | | ``fatf.utils.data.segmentation`` | | | +--------------------------------------------------------------+------------------+------------+ | ``fatf.transparency.predictions.surrogate_image_explainers`` | | | +--------------------------------------------------------------+ | | | ``fatf.utils.data.occlusion`` | `Pillow`_ | >=8.4.0 | +--------------------------------------------------------------+ | | | ``fatf.utils.data.segmentation`` | | | +--------------------------------------------------------------+------------------+------------+ | ``fatf.vis`` | matplotlib_ | >=3.0.0 | +--------------------------------------------------------------+------------------+------------+ User Installation ----------------- The easies way to install FAT Forensics is via ``pip``:: pip install fat-forensics which will only installed the required dependencies. If you want to install the package together with all the auxiliary dependencies please consider using the ``[all]`` option:: pip install fat-forensics[all] The documentation provides more detailed `installation instructions <inst_>`_. Changelog ========= See the changelog_ for a development history and project milestones. Development =========== We welcome new contributors of all experience levels. The `Development Guide <dev_guide_>`_ has detailed information about contributing code, documentation, tests and more. Some basic development instructions are included below. Important Links --------------- * Project's web site and documentation: `https://fat-forensics.org`_. * Official source code repository: `https://github.com/fat-forensics/fat-forensics`_. * FAT Forensics releases: `https://pypi.org/project/fat-forensics`_. * Issue tracker: `https://github.com/fat-forensics/fat-forensics/issues`_. Source Code ----------- You can check out the latest FAT Forensics source code via git with the command:: git clone https://github.com/fat-forensics/fat-forensics.git Contributing ------------ To learn more about contributing to FAT Forensics, please see our `Contributing Guide <contrib_guide_>`_. Testing ------- You can launch the test suite from the root directory of this repository with:: make test-with-code-coverage To run the tests you will need to have version 3.9.1 of ``pytest`` installed. This package, together with other development dependencies, can be also installed with:: pip install -r requirements-dev.txt or with:: pip install fat-forensics[dev] See the *Testing* section of the `Development Guide <dev_testing_>`_ page for more information. Please note that the ``make test-with-code-coverage`` command will test the version of the package in the local ``fatf`` directory and not the one installed since the pytest command is preceded by ``PYTHONPATH=./``. If you want to test the installed version, consider using the command from the ``Makefile`` without the ``PYTHONPATH`` variable. To control the randomness during the tests the ``Makefile`` sets the random seed to ``42`` by preceding each test command with ``FATF_SEED=42``, which sets the environment variable responsible for that. More information about the setup of the *Testing Environment* is available on the `development <dev_testing_env_>`_ web page in the documentation. Submitting a Pull Request ------------------------- Before opening a Pull Request, please have a look at the `Contributing <contrib_guide_>`_ page to make sure that your code complies with our guidelines. Help and Support ================ For help please have a look at our `documentation web page <https://fat-forensics.org>`_, especially the `Getting Started <getting_started_>`_ page. Communication ------------- You can reach out to us at: * our gitter_ channel for code-related development discussion; and * our `mailing list`_ for discussion about the project's future and the direction of the development. More information about the communication can be found in our documentation on the `main page <https://fat-forensics.org/index.html#communication>`_ and on the `develop page <https://fat-forensics.org/development.html#communication>`_. Citation -------- If you use FAT Forensics in a scientific publication, we would appreciate citations! Information on how to cite use is available on the `citation <https://fat-forensics.org/getting_started/cite.html>`_ web page in our documentation. Acknowledgements ================ This project is the result of a collaborative research agreement between Thales and the University of Bristol with the initial funding provided by Thales. .. _SciPy: https://scipy.org/ .. _NumPy: https://www.numpy.org/ .. _scikit-learn: https://scikit-learn.org/stable/ .. _matplotlib: https://matplotlib.org/ .. _scikit-image: https://scikit-image.org/ .. _Pillow: https://pillow.readthedocs.io/ .. _`https://fat-forensics.org`: https://fat-forensics.org .. _inst: https://fat-forensics.org/getting_started/install_deps_os.html#installation-instructions .. _changelog: https://fat-forensics.org/changelog.html .. _dev_guide: https://fat-forensics.org/development.html .. _`https://github.com/fat-forensics/fat-forensics`: https://github.com/fat-forensics/fat-forensics .. _`https://pypi.org/project/fat-forensics`: https://pypi.org/project/fat-forensics .. _`https://github.com/fat-forensics/fat-forensics/issues`: https://github.com/fat-forensics/fat-forensics/issues .. _contrib_guide: https://fat-forensics.org/development.html#contributing-code .. _dev_testing: https://fat-forensics.org/development.html#testing .. _dev_testing_env: https://fat-forensics.org/development.html#testing-environment .. _getting_started: https://fat-forensics.org/getting_started/index.html .. _gitter: https://gitter.im/fat-forensics .. _`mailing list`: https://groups.google.com/forum/#!forum/fat-forensics


نیازمندی

مقدار نام
>=1.10.0 numpy
>=0.13.3 scipy
>=3.0.0 matplotlib
>=8.4.0 Pillow
>=0.17 scikit-image
>=0.19.2 scikit-learn
==2.1.0 codecov
<0.18 docutils
==3.8.1 flake8
<=4.3.21 isort
<3.1.0 jinja2
==0.770 mypy
==0.9.1 nbval
==0.8.0 numpydoc
==2.3.0 pylint
==3.9.1 pytest
==2.6.0 pytest-cov
==2.0 sphinx
==0.3.1 sphinx-gallery
==1.14.0 twine
- wheel
==0.26.0 yapf
>=0.19.2 scikit-learn
>=3.0.0 matplotlib


زبان مورد نیاز

مقدار نام
~=3.5 Python


نحوه نصب


نصب پکیج whl FAT-Forensics-0.1.2:

    pip install FAT-Forensics-0.1.2.whl


نصب پکیج tar.gz FAT-Forensics-0.1.2:

    pip install FAT-Forensics-0.1.2.tar.gz