معرفی شرکت ها


EvoOpt-0.14


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

EvoOpt: Python Implementation of State-of-Art Evolutionary Algorithms
ویژگی مقدار
سیستم عامل -
نام فایل EvoOpt-0.14
نام EvoOpt
نسخه کتابخانه 0.14
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sin Yong Teng
ایمیل نویسنده tsyet12@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/EvoOpt/
مجوز BSD 2-Clause
# EvoOpt - Evolutionary Optimization in Python ![EvoOpt Logo](https://user-images.githubusercontent.com/19692103/58713060-1de5bc00-83c2-11e9-8213-bf69e3382321.jpg) <h3 align="center"> EvoOpt: Evolutionary Optimization in Python </h3> <div id="Navigation"> <p align="center"> * Open sourced * Automatically Vectorized * Fast Computation * One Library Do-it-all <br/> <h3 align="center"><a href="https://github.com/tsyet12/issues">Report Bug</a> · <a href="https://github.com/tsyet12/issues"> Request Feature</a></h3> </p> </div> [![Build Status](https://travis-ci.com/tsyet12/EvoOpt.svg?branch=master)](https://travis-ci.com/tsyet12/EvoOpt) [![PyPI-Status](https://img.shields.io/pypi/status/EvoOpt.svg?color=blue)](https://pypi.org/project/EvoOpt/) [![PyPI](https://img.shields.io/pypi/v/EvoOpt.svg?color=green)](https://pypi.org/project/EvoOpt/) [![dependencies](https://img.shields.io/librariesio/github/tsyet12/EvoOpt.svg)](https://github.com/tsyet12/EvoOpt/network/dependencies) ![PyPI-Implementation](https://img.shields.io/pypi/implementation/EvoOpt.svg) ![Python Version](https://img.shields.io/pypi/pyversions/EvoOpt.svg) ![PyPI-License](https://img.shields.io/pypi/l/EvoOpt.svg?color=Green) [![LinkedIn](https://img.shields.io/badge/-LinkedIn-black.svg?style=flat-square&logo=linkedin&colorB=555)](https://www.linkedin.com/in/teng-sin-yong-richard-a18993123/) [![DOI](https://zenodo.org/badge/186832141.svg)](https://zenodo.org/badge/latestdoi/186832141) Python implementation of state-of-art meta-heuristic and evolutionary optimisation algorithms. **This library is implemented in Numpy (which was written in C) for fast processing speed** <!-- TABLE OF CONTENTS --> ## Table of Contents * [About the Project](#about-the-project) * [Current support for algorithms](#current-support-for-algorithms) * [Getting Started](#getting-started) * [Dependencies](#dependencies) * [Installation](#installation) * [Usage](#usage) * [Contributing](#contributing) * [License](#license) * [Contact](#contact) * [Acknowledgements](#acknowledgements) <!-- ABOUT THE PROJECT --> ## About The Project ## Current support for algorithms [x] Genetic Algorithm [x] Duelist Algorithm [X] Particle Swarm Optimization [X] Gravitational Search Algorithm [X] Firefly Algorithm [X] Simulated Annealing [ ] Multi-Verse Optimization [ ] Grey-Wolf Optimization More algorithms to come... <!-- GETTING STARTED --> ## Getting Started **There are four simple steps to run an optimization problem using EvoOpt** (Example 2 from example folder) **Prerequisites** ```python from solver.DuelistAlgorithm import DuelistAlgorithm ``` **1. Define your function. Say you want to minimize the equation f=(x1,x2) = (x1)^2+(x2)^2 ** ```python def f(x1,x2): return x1*x1+x2*x2 ``` **2. Define the variables that can be *manipulated* for optimization. Define their names as string and put them in an array. ** ```python x=["x1","x2"] ``` **3. Define the boundaries for the manipulated variables:** Say: x1 is bounded from -2 to 10 (-2 is min value of x1 and 10 is max value of x1) x2 is bounded from 10 to 15 (10 is min value of x2 and 15 is max value of x2) We can arrange these boundaries according to the definition array in step 2. | Variables | x1 | x2 | | :---: | :---: | :---: | | Min | -2 | 5 | | Max | 10 | 15 | The corresponding code is: ```python xmin=[-2,5] xmax=[10,15] ``` **4. Setup the solver and start the solve procedure.** ```python DA=DuelistAlgorithm(f,x,xmin,xmax,max_gen=1000) DA.solve(plot=True) ``` **Example Result** ![Result Image](https://user-images.githubusercontent.com/19692103/58713291-892f8e00-83c2-11e9-8756-e27967c32453.png) ## Dependencies Numpy and Matplotlib Windows: ```Bash $python -m pip install numpy matplotlib ``` Linux: ```Bash $pip install numpy matplotlib ``` ## Installation You can use two methods for installation: **1. Install from github (recommended as this will download the newest version)** First download the git repository. You can do this by clicking the download button or using the git command: ```BASH $ git pull https://github.com/tsyet12/EvoOpt ``` <b> Move to the directory: ```BASH $ cd (directory of EvoOpt) ``` Run setup. The following command installs all files in directory: ```BASH $ pip install -e . ``` **1. Install from pip ** You can install this package from pip. Linux: ```BASH $ pip install EvoOpt ``` Windows: ```BASH $python -m pip install EvoOpt ``` <!-- USAGE EXAMPLES --> ## Usage To be updated. <!-- CONTRIBUTING --> ## Contributing Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are **greatly appreciated**. 1. Fork the Project 2. Create your Feature Branch (`git checkout -b testbranch/solvers`) 3. Commit your Changes (`git commit -m 'Improve testbranch/solvers'`) 4. Push to the Branch (`git push origin testbranch/solvers`) 5. Open a Pull Request <!-- LICENSE --> ## License Distributed under the BSD-2-Clause License. See `LICENSE` for more information. <!-- CONTACT --> ## Contact Sin Yong Teng: tsyet12@gmail.com Project Link: [https://github.com/tsyet12/EvoOpt](https://github.com/tsyet12/EvoOpt) <!-- ACKNOWLEDGEMENTS --> ## Acknowledgements


نحوه نصب


نصب پکیج whl EvoOpt-0.14:

    pip install EvoOpt-0.14.whl


نصب پکیج tar.gz EvoOpt-0.14:

    pip install EvoOpt-0.14.tar.gz