معرفی شرکت ها


EpyNN-1.2.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

EpyNN: Educational python for Neural Networks.
ویژگی مقدار
سیستم عامل -
نام فایل EpyNN-1.2.9
نام EpyNN
نسخه کتابخانه 1.2.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Florian Malard and Stéphanie Olivier-Van Stichelen
ایمیل نویسنده florian.malard@gmail.com
آدرس صفحه اصلی https://github.com/synthaze/EpyNN
آدرس اینترنتی https://pypi.org/project/EpyNN/
مجوز GPL-3.0 License
# EpyNN ![](https://img.shields.io/github/languages/top/synthaze/epynn) ![](https://img.shields.io/github/license/synthaze/epynn) ![](https://img.shields.io/github/last-commit/synthaze/epynn) ![](https://img.shields.io/github/stars/synthaze/epynn?style=social) ![](https://img.shields.io/twitter/follow/epynn_synthaze?label=Follow&style=social) **EpyNN is written in pure Python/NumPy.** If you use EpyNN in academia, please cite: Malard F., Danner L., Rouzies E., Meyer J. G., Lescop E., Olivier-Van Stichelen S. [**EpyNN: Educational python for Neural Networks**](https://www.softxjournal.com/article/S2352-7110(22)00090-5/fulltext), *SoftwareX* 19 (2022). ## Documentation Please visit https://epynn.net/ for extensive documentation. ### Purpose EpyNN is intended for **teachers**, **students**, **scientists**, or more generally anyone with minimal skills in Python programming **who wish to understand** and build from basic implementations of Neural Network architectures. Although EpyNN can be used for production, it is meant to be a library of **homogeneous architecture templates** and **practical examples** which is expected to save an important amount of time for people who wish to learn, teach or **develop from scratch**. ### Content EpyNN features **scalable**, **minimalistic** and **homogeneous** implementations of major Neural Network architectures in **pure Python/Numpy** including: * [Embedding layer (Input)](https://epynn.net/Embedding.html) * [Fully connected layer (Dense)](https://epynn.net/Dense.html) * [Recurrent Neural Network (RNN)](https://epynn.net/RNN.html) * [Long Short-Term Memory (LSTM)](https://epynn.net/LSTM.html) * [Gated Recurrent Unit (GRU)](https://epynn.net/GRU.html) * [Convolution (CNN)](https://epynn.net/Convolution.html) * [Pooling (CNN)](https://epynn.net/Pooling.html) * [Dropout - Regularization](https://epynn.net/Dropout.html) * [Flatten - Adapter](https://epynn.net/Flatten.html) Model and function rules and definition: * [Architecture Layers - Model](https://epynn.net/EpyNN_Model.html) * [Neural Network - Model](https://epynn.net/Layer_Model.html) * [Data - Model](https://epynn.net/Data_Model.html) * [Activation - Functions](https://epynn.net/activation.html) * [Loss - Functions](https://epynn.net/loss.html) While not enhancing, extending or replacing EpyNN's documentation, series of live examples in Python and Jupyter notebook formats are offered online and within the archive, including: * [Data preparation - Examples](https://epynn.net/data_examples.html) * [Network training - Examples](https://epynn.net/run_examples.html) ### Reliability EpyNN has been cross-validated against TensorFlow/Keras API and provides identical results for identical configurations in the limit of float64 precision. Please see [Is EpyNN reliable?](https://epynn.net/index.html#is-epynn-reliable) for details and executable codes. ### Recommended install * **Linux/MacOS** ```bash # Use bash shell bash # Clone git repository git clone https://github.com/synthaze/EpyNN # Change directory to EpyNN cd EpyNN # Install EpyNN dependencies pip3 install -r requirements.txt # Export EpyNN path in $PYTHONPATH for current session export PYTHONPATH=$PYTHONPATH:$PWD # Alternatively, not recommended # pip3 install EpyNN # epynn ``` **Linux:** Permanent export of EpyNN directory path in ```$PYTHONPATH```. ```bash # Append export instruction to the end of .bashrc file echo "export PYTHONPATH=$PYTHONPATH:$PWD" >> ~/.bashrc # Source .bashrc to refresh $PYTHONPATH source ~/.bashrc ``` **MacOS:** Permanent export of EpyNN directory path in ```$PYTHONPATH```. ```bash # Append export instruction to the end of .bash_profile file echo "export PYTHONPATH=$PYTHONPATH:$PWD" >> ~/.bash_profile # Source .bash_profile to refresh $PYTHONPATH source ~/.bash_profile ``` * **Windows** ```bash # Clone git repository git clone https://github.com/synthaze/EpyNN # Change directory to EpyNN chdir EpyNN # Install EpyNN dependencies pip3 install -r requirements.txt # Show full path of EpyNN directory echo %cd% # Alternatively, not recommended # pip3 install EpyNN # epynn ``` Copy the full path of EpyNN directory, then go to: ``Control Panel > System > Advanced > Environment variable`` If you already have ``PYTHONPATH`` in the ``User variables`` section, select it and click ``Edit``, otherwise click ``New`` to add it. Paste the full path of EpyNN directory in the input field, keep in mind that paths in ``PYTHONPATH`` should be comma-separated. ANSI coloring schemes do work on native Windows10 and later. For prior Windows versions, users should configure their environment to work with ANSI coloring schemes for optimal experience. ## Current release ### 1.2 Publication release * Minor revisions for peer-review process. See [CHANGELOG.md](CHANGELOG.md) for past releases. ## Project tree **epynn** * [convolution](epynn/convolution) * [backward.py](epynn/convolution/backward.py) * [forward.py](epynn/convolution/forward.py) * [models.py](epynn/convolution/models.py) * [parameters.py](epynn/convolution/parameters.py) * [dense](epynn/dense) * [backward.py](epynn/dense/backward.py) * [forward.py](epynn/dense/forward.py) * [models.py](epynn/dense/models.py) * [parameters.py](epynn/dense/parameters.py) * [dropout](epynn/dropout) * [backward.py](epynn/dropout/backward.py) * [forward.py](epynn/dropout/forward.py) * [models.py](epynn/dropout/models.py) * [parameters.py](epynn/dropout/parameters.py) * [embedding](epynn/embedding) * [backward.py](epynn/embedding/backward.py) * [dataset.py](epynn/embedding/dataset.py) * [forward.py](epynn/embedding/forward.py) * [models.py](epynn/embedding/models.py) * [parameters.py](epynn/embedding/parameters.py) * [flatten](epynn/flatten) * [backward.py](epynn/flatten/backward.py) * [forward.py](epynn/flatten/forward.py) * [models.py](epynn/flatten/models.py) * [parameters.py](epynn/flatten/parameters.py) * [gru](epynn/gru) * [backward.py](epynn/gru/backward.py) * [forward.py](epynn/gru/forward.py) * [models.py](epynn/gru/models.py) * [parameters.py](epynn/gru/parameters.py) * [lstm](epynn/lstm) * [backward.py](epynn/lstm/backward.py) * [forward.py](epynn/lstm/forward.py) * [models.py](epynn/lstm/models.py) * [parameters.py](epynn/lstm/parameters.py) * [pooling](epynn/pooling) * [backward.py](epynn/pooling/backward.py) * [forward.py](epynn/pooling/forward.py) * [models.py](epynn/pooling/models.py) * [parameters.py](epynn/pooling/parameters.py) * [rnn](epynn/rnn) * [backward.py](epynn/rnn/backward.py) * [forward.py](epynn/rnn/forward.py) * [models.py](epynn/rnn/models.py) * [parameters.py](epynn/rnn/parameters.py) * [template](epynn/template) * [backward.py](epynn/template/backward.py) * [forward.py](epynn/template/forward.py) * [models.py](epynn/template/models.py) * [parameters.py](epynn/template/parameters.py) * [network](epynn/network) * [backward.py](epynn/network/backward.py) * [evaluate.py](epynn/network/evaluate.py) * [forward.py](epynn/network/forward.py) * [hyperparameters.py](epynn/network/hyperparameters.py) * [initialize.py](epynn/network/initialize.py) * [models.py](epynn/network/models.py) * [report.py](epynn/network/report.py) * [training.py](epynn/network/training.py) * [commons](epynn/commons) * [io.py](epynn/commons/io.py) * [library.py](epynn/commons/library.py) * [logs.py](epynn/commons/logs.py) * [loss.py](epynn/commons/loss.py) * [maths.py](epynn/commons/maths.py) * [metrics.py](epynn/commons/metrics.py) * [models.py](epynn/commons/models.py) * [plot.py](epynn/commons/plot.py) * [schedule.py](epynn/commons/schedule.py) **epynnlive** * [author_music](epynnlive/author_music) * [captcha_mnist](epynnlive/captcha_mnist) * [dummy_boolean](epynnlive/dummy_boolean) * [dummy_image](epynnlive/dummy_image) * [dummy_string](epynnlive/dummy_string) * [dummy_time](epynnlive/dummy_time) * [ptm_protein](epynnlive/ptm_protein)


نیازمندی

مقدار نام
==8.3.1 Pillow
==2.10.0 Pygments
==0.10.0 cycler
==1.0.0 jupyter
==1.3.2 kiwisolver
- matplotlib
==5.4.1 nbconvert
==1.21.2 numpy
==2.4.7 pyparsing
==2.8.2 python-dateutil
==1.6.3 scipy
==1.16.0 six
==0.8.9 tabulate
==1.1.0 termcolor
==1.6.4 texttable
- utilsovs-pkg
==3.2 wget


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl EpyNN-1.2.9:

    pip install EpyNN-1.2.9.whl


نصب پکیج tar.gz EpyNN-1.2.9:

    pip install EpyNN-1.2.9.tar.gz