معرفی شرکت ها


EmulsiPred-0.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package to predict emulsifying potential of peptides
ویژگی مقدار
سیستم عامل -
نام فایل EmulsiPred-0.0.3
نام EmulsiPred
نسخه کتابخانه 0.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Paolo Marcatili, Tobias Olsen, Egon Hansen
ایمیل نویسنده pamar@dtu.dk
آدرس صفحه اصلی https://github.com/MarcatiliLab/EmulsiPred
آدرس اینترنتی https://pypi.org/project/EmulsiPred/
مجوز -
# EmulsiPred Tool for prediction of emulsifying peptides. EmulsiPred predicts the emulsifying property of either a single peptide or for any peptide within a protein sequences. Three emulsifying scores are calculated for each peptide as described by [García-Moreno P.J. et al., 2020](doi.org/10.1038/s41598-019-57229-6), with a peptide defined as a sequence of 7-30 amino acids. EmulsiPred takes as input a fasta file or a NetSurfP (2 or 3) result file. The NetSurfP-2 file should be in the NetSurfP-1 Format (retrieved when clicking 'Export All' in the upper right side of NetSurfP's 'Server Output' window). For a fasta file with protein sequences, EmulsiPred will return scores for each peptide found within the protein sequences. If given a NetSurfP result file, EmulsiPred will only return the alpha and beta scores for peptides present in either an alpha helix or beta sheet, predicted by NetSurfP. #### Prerequisites and installation The package can either be installed with pip or from github. In both cases, python-3.9 or higher needs to be installed in your environment. Additionally, it is recommended to install the package in a new environment. The following commands are run in the command line. 1: Set up a new environment. ~~~.sh python3 -m venv EmulsiPred_env ~~~ 2: Enter (activate) the environment. ~~~.sh source EmulsiPred_env/bin/activate ~~~ 3a: Install EmulsiPred within the activated environment with pip. ~~~.sh pip install EmulsiPred ~~~ 3b: Install EmulsiPred by installing from github with pip. ~~~.sh pip install "git+https://github.com/MarcatiliLab/EmulsiPred.git" ~~~ After either running 3a or 3b, EmulsiPred is installed within the activated environment (in our case EmulsiPred_env). --- #### Running EmulsiPred After installation, EmulsiPred can be run from the terminal or within a python script. As mentioned above, EmulsiPred requires a fasta file containing the protein sequences to check for emulsifiers or a NetSurfP file containing secondary structure information of each sequences. Additionally, there are also five additional parameters. 1) -n (netsurfp_results): Whether the input is a NetSurfP file (default is False) 2) -p (peptides): Whether the input are peptides and therefore shouldn't be cleaved into peptides (default is False) 3) -o (out_dir): Output directory (default is the current directory). 4) --nr_seq (nr_seq): Results will only include peptides present in this number of sequences or higher (default 1). 5) --ls (lower_score): Results will only include peptides with a score higher than this score (default 2). EmulsiPred can be run directly in the terminal with the following command. ~~~.sh python -m EmulsiPred -s path/to/sequence.fsa -n False -p False -o path/to/out_dir --nr_seq 1 --ls 2 ~~~ Furthermore, it can be imported and run in a python script. ~~~~~~~~~~~~~~~~~~~~~python import EmulsiPred as ep ep.EmulsiPred(sequences='path/to/sequence.fsa', netsurfp_results=False, peptides=False, out_dir='path/to/out_dir', nr_seq=1, lower_score=2) ~~~~~~~~~~~~~~~~~~~~~ #### Interpretation of predictions The predicted values are a relative ordering of the peptides by chance of being an emulsifier. In other words, a higher score implies a higher chance of being an emulsifier.


نیازمندی

مقدار نام
- numpy
- pandas


زبان مورد نیاز

مقدار نام
>=3.9 Python


نحوه نصب


نصب پکیج whl EmulsiPred-0.0.3:

    pip install EmulsiPred-0.0.3.whl


نصب پکیج tar.gz EmulsiPred-0.0.3:

    pip install EmulsiPred-0.0.3.tar.gz