معرفی شرکت ها


Eir-0.1.21


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Helps model epidemics using spatial models
ویژگی مقدار
سیستم عامل -
نام فایل Eir-0.1.21
نام Eir
نسخه کتابخانه 0.1.21
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mathew Jacob
ایمیل نویسنده mjacob1002@gmail.com
آدرس صفحه اصلی https://github.com/mjacob1002/Eir
آدرس اینترنتی https://pypi.org/project/Eir/
مجوز MIT
# Eir: Simulate Epidemics Using Spatial Models in Python [![DOI](https://joss.theoj.org/papers/10.21105/joss.03247/status.svg)](https://doi.org/10.21105/joss.03247) Eir, named after the Norse valkyrie with great medical skill, is an API that allows the user to conduct stochastic simulations of epidemics, primarily using spatial models. With this software, one can simulate not only how epidemics relate to the distances between an infectious and susceptible indivdual, but also how the movement on infectious individuals plays a role in the spread of a disease. Eir also offers a lot of variety to the user, containing many more compartmental models that is present in any of the existing packages similar to Eir, including hospitalizations and vaccinations. Eir's usefulness can clearly be seen in modern day, where simulations and models are constantly used to form policy to combat COVID-19. ## Dependencies Eir depends on ```numpy```, ```pandas```, ```matplotlib```, and ```multipledispatch```. ## Installation One can install Eir via PyPI by running the following command via the command line: ```pip install Eir ``` The dependencies will automatically be installed as well. ## Notable Features Eir offers countless different compartmental models, including: - SIS - SIR - SIRS - SIRD - SIRV - SIRSD - SIRSV - SIRDV - SIRSDV - SEIR - SEIRS - SEIRD - SEIRV - SEIRSD - SEIRSV - SEIRDV - SEIRSDV - ICU models. Eir also offers these models in different spatial models, some with mobility and some static. ## Examples If one were to model the ICU hospitalizations using the Hub Model, the code could look as follows: ```python from Eir import PeriodicICUV test = PeriodicICUV(S0=999, E0=0, I0=1, R0=0, V0=0, rho=.3, ioda=.3, gamma=.25, mu=0.007, omega=.14, phi = .42, chi=.15, kappa=.05, eta=.02, spread_r=2, sigma_r=.25, move_R=4, sigma_R=.75, side=33, days=31) test.run() test.plot() ``` In the above code segment: S0 : int The starting number of susceptible individuals in the simulation. E0: int The starting number of exposed individuals in the simulation. I0: int The starting number of infected individuals in the simulation. R0: int The starting number of recovered individuals in the simulation. V0: int The starting number of vaccinated individuals in the simulation. rho: float The probability of an individual leaving the E compartment. ioda: float The probability that, given an individual is leaving the E compartment, he goes to L compartment. The probability of that person going to I compartment is (1-ioda). gamma: float The probability of a person in I compartment going to the R compartment mu: float The probability of going from I to D, given that the person didn't go from I to R. phi: float The probability of going from L compartment to ICU compartment. chi: float The probability of going from ICU compartment to R compartment. omega: float The probability of going from ICU compartment to D compartment, given that individual didn't go from ICU compartment to R compartment. kappa: float The probability of going from R compartment to S compartment. eta: float The probability of going from S compartment to V compartment, given that the individual didn't go from S compartment to E compartment. timeDelay: float The number of days that vaccine rollout is delayed. If negative or 0, then there is no delay in vaccine rollout. Default value is -1. spread_r: the mean of the normal distribution of spreading radii that is use to generate spreading radii for each individual in the simulation. sigma_r: the standard deviation of the normal distribution of spreading radii that is used to generate spreading raddi for each individual in the simulation. move_R: the mean of the normal distribution of spreading radii that is use to generate movement radii for each individual's periodic movement in the simulation. sigma_R: the standard deviation of the normal distribution of spreading radii that is use to generate movement radii for each individual's periodic movement in the simulation. side: the length of the side of the square plane that individuals are confined to during the simulation. days: the number of days being simulated. To understand the variables and their meaning for different models, the documentation can be found in the docs folder in this repository, or looking at the docstrings in python. Additionally, if more detailed information about transmission chains and state histories was required, the methods from the Simul_Details class would allow the user to get a more in-depth look at the dynamics of the simulation. ## Contributors The author welcomes and encourages new contributors to help test ``` Eir``` and add new functionality. If one wishes to contact the author, they may do so by emailing mjacob1002@gmail.com. Response times may vary.


نیازمندی

مقدار نام
- numpy
- pandas
- matplotlib
- multipledispatch


نحوه نصب


نصب پکیج whl Eir-0.1.21:

    pip install Eir-0.1.21.whl


نصب پکیج tar.gz Eir-0.1.21:

    pip install Eir-0.1.21.tar.gz