معرفی شرکت ها


EasyModeler-2.2.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Simple ODE Tools for Modelers
ویژگی مقدار
سیستم عامل -
نام فایل EasyModeler-2.2.6
نام EasyModeler
نسخه کتابخانه 2.2.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Evan L Turner
ایمیل نویسنده evanlee.turner@gmail.com
آدرس صفحه اصلی https://pypi.python.org/pypi/EasyModeler
آدرس اینترنتی https://pypi.org/project/EasyModeler/
مجوز BSD
EasyModeler is a package for calibration and validation of Ordinary Differential Equations ODEs to sample data. Requirements ------------ * Python 2.6 or 2.7 * SciPy and NumPy 2.6 or 2.7 * Matplotlib 2.6 or 2.7 * sas7bdat Features -------- * ODEINT Wrapper Intelligent non-invasive wrapper to SciPy's integrator * ODE Calibration Auto-calibrate a series of ODEs to data * TimeSeries Files Handling of dtInput * Model Validation Validate using Goodness of Fit statistics * Graphical Plotting Basic plotting via matplotlib * Graphical Interface Coming in version 2.3 Documentation and Userguide --------------------------- * https://dl.dropboxusercontent.com/u/66459905/site/index.html * Supports comprehensive autodocs with example usage inside source! * Looking for a permanent document home online *please suggest ideas to me!* Install as python module ------------------------ from internet ~~~~~~~~~~~~~ :: $ easy_install easymodeler from archive ~~~~~~~~~~~~ :: $ unzip easymodeler-x.x.x.zip $ cd easymodler-x.x.x $ python setup.py install Change Log 2.2.6 (2016-3-29) ~~~~~~~~~~~~~~~~~ * bugfixes * added RMSD GOF parameter ---------- 2.2.5 (2015-4-23) ~~~~~~~~~~~~~~~~~ * bugfixes 2.2.4 (2015-4-22) ~~~~~~~~~~~~~~~~~ * bugfixes 2.2.3 (2015-4-1) ~~~~~~~~~~~~~~~~ * bugfixes * dtinput fixes * example dataset inclusion 2.2.2 (2015-3-31) ~~~~~~~~~~~~~~~~~ * SAS filetype support * fixes to calibration * autodocs continue to update 2.2.1 (2015-3-27) ~~~~~~~~~~~~~~~~~ * Additions to Calibration object * GraphOpt object creation 2.2 (2015-3-26) ~~~~~~~~~~~~~~~~ * Rollout of simple plotting interface 2.1.9 (2015-3-25) ~~~~~~~~~~~~~~~~~ * autodocs continue to update 2.1.4 - 2.1.8 (2015-3-10) ~~~~~~~~~~~~~~~~~~~~~~~~~ * trying yet again to fix the pypi readme * autodocs continue to update * rename functions to naming conventions 2.0.0 - 2.1.3 (2015-3-6) ~~~~~~~~~~~~~~~~~~~~~~~~ * autodocs continue to update * README change * Sample Example * LICENSE Acknowledgements ---------------- Support for this project was made possible by grant number NA11NOS0120024 from NOAA to support the Gulf of Mexico Coastal Ocean Observing System (GCOOS) via subcontract S120015 from the TAMU Research Foundation. Sample Usage ------------ Here is a snippet of the userguide available at https://dl.dropboxusercontent.com/u/66459905/site/index.html Example 1 --------- Lotka Volterra Predator Prey Interaction ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Lotka Volterra system is a simple model of predator-prey dynamics and consists of two coupled differentials. http://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equation This is a simple example highlighting **EasyModler's** ability to integrate ODEs without complication! At a minimum to integrate we require: 1. A defined ODE function 2. A set of initial conditions as a list 3. Number of times to run the integrator Declare an ODE_INT function in your source code. This will be passed to the **scipy.integrate.odeint** integrator :: def LV_int(t,initial,dtinput,coefficients): x = initial[0] y = initial[1] A = 1 B = 1 C = 1 D = 1 x_dot = (A * x) - (B * x *y) y_dot = (D * x * y) - (C * y) return [x_dot, y_dot] Pass the ODE function to **emlib.Model** as :: >>> import emlib >>> LV = emlib.Model(LV_int) INFO -512- New Model(1): LV_int INFO -524- No algorithm supplied assuming vode/bfd O12 Nsteps3000 Now lets integrate our LV function for 200 timesteps! :: >>> LV.Integrate([1,1],maxdt=200) DEBUG -541- ODEINT Initials:11 DEBUG -579- Ending in 200 runs DEBUG -600- Integration dT:0 of 200 Remaining:200 DEBUG -612- Completed Integration, created np.array shape:(200, 2) The model output is stored in the **emlib.Model** object as arrays *computedT* and *computed* :: >>> print LV.computed [[ 0.37758677 2.93256414] [ 0.13075395 1.32273451] [ 0.14707288 0.55433421] [ 0.27406944 0.24884565] **EasyModeler** is organized where time is stored separately from data. This is a design feature to aid processing timeseries data.


نحوه نصب


نصب پکیج whl EasyModeler-2.2.6:

    pip install EasyModeler-2.2.6.whl


نصب پکیج tar.gz EasyModeler-2.2.6:

    pip install EasyModeler-2.2.6.tar.gz