معرفی شرکت ها


EPRsim-0.0.4.dev0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Simulation Package for cw-EPR spectra
ویژگی مقدار
سیستم عامل -
نام فایل EPRsim-0.0.4.dev0
نام EPRsim
نسخه کتابخانه 0.0.4.dev0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Stephan Rein
ایمیل نویسنده stephan.rein@physchem.uni-freiburg.de
آدرس صفحه اصلی https://www.radicals.uni-freiburg.de/de/software
آدرس اینترنتی https://pypi.org/project/EPRsim/
مجوز GPLv3
EPRsim ====== Open-source simulation package for cw-EPR spectra. EPRsim has been developed in the group of Prof. Dr. Stefan Weber at the University of Freiburg, Freiburg im Breisgau, Germany, during the last couple of years. EPRsim was developed by Stephan Rein. The program uses several concepts described in [1]. EPRsim is open-source and available free of charge. Find the full documentation at the link below: https://www.radicals.uni-freiburg.de/de/software Installation ------------ Install EPRsim via pip: $ pip install eprsim Run EPRsim ---------- Call it as package when running Python. >>> import EPRsim.EPRsim as sim Define parameters and run the simulation by invoking the simulate() function of EPRsim. >>> Param = sim.Parameters() >>> B, spc, flag = sim.simulate(Param) The simulate() functions is discribed in the following: Parameters ---------- Parameters : object Object with all simulation parameters. Returns ------- field : numpy.ndarray Magnetic field vector spc : numpy.ndarray Intesity vector of the cw-EPR signal flag : list Flags with warning codes (description pleas find below) Notes ------ Main function for the simulation of cw-EPR in different motional regimes (isotropic, fast-motion and solid state) All spectra are simulated as field sweep spectra. Isotropic/fast-motion For the fast-motion regime/isotropic limit, the program solves the implicit Breit-Rabi formula [1] in a fixed-point iteration. Anisotropic line-broadening effects in the fast-motion regime are calculated via the Kivelson formula [2]. Currently, Euler angles between tensors are ignored by the algorithm! All tensors (only relevant for fast-motion) need to be in their principal axis system and colinear to each other. Solid-state In the solid-state regime, the program uses a full matrix diagonalization algorithm. Therefore, only spin systems with a Hilbert space dimension of dim(H) < 512 can be calculated. The powder average is partially generated by interpolation of eigenvalues and transition probabilitites (similar to [1]). The interpolation level is automatically set by the program. The solid state algorithm treats arbitrary spin systems as long as the Hilbert space dimension is within the threshold. Spin-polarization can be defined (withing the electronic sublevels) as zero-field populations. The program constructs (sparse) density matrices out of the zero-field eigenvectors, to efficiently calculate the population transformation from zero field to high field. Per default, the program calculates with thermal equilibrium. Nuclear quadrupolar couplings (for I > 0.5) are currently not implemented. The warning codes are: 0: Everything is alright 1: Solid-state is not possible due to too large matrix dimension. 2: Fast-motion/iso is not possible due to S > 1/2. The Parameter syntax was kept similar to the one used in EasySpin [1], to make it Optional Parameters (with their defaults): ================= ========== ================================= Parameter Default Meaning ================= ========== ================================= mwFreq 9.6 microwave frequency in GHz A None Hyperfine couplings in MHz abund_threshold 0.0001 Threshold for isotope mixtures D None Zero-field splitting in MHz g 2.0023193 g-tensor Harmonic 1 Harmonic of the spectrum J None Exchange coupling tcorr None Rotational correlation time in ns logtcorr None Decadic logarithm of tcorr lw [0.1, 0.1] Line-widths (Gaussian, Lorentzian) ModAmp 0 Modulation amplitude motion 'solid' Motional regime mwPhase 0 Microwave phase offset n 1 Number of equivalent nuclei nKnots 12 Initial number of theta values Nucs None Isotope specification Points 1024 Number of points Range [330, 360] Magentic field range in mT S 0.5 Electron spin quantum number SNR None Signal-to-noise ratio verbosity True Print output information weight 1 Weighting (for multiple species) gFrame None Euler angles for the g tensor AFrame None Euler angles for the A tensors DFrame None Euler angles for the D tensor Temperature 300 Experimental temperature Population None Zero-field populations LevelSelect 5e-5 Threshold for level selection ================= ========== ================================= Examples -------- Simple example for the simulation of an isotropic nitroxide spectrum. >>> import EPRsim.EPRsim as sim >>> P = sim.Parameters() >>> P.Range = [335 ,350] >>> P.mwFreq = 9.6 >>> P.g = 2.002 >>> P.A = 45.5 >>> P.Nucs = 'N' >>> P.lw = [0.2, 0.2] >>> P.motion = 'fast' >>> B0, spc, flag = sim.simulate(P) Simple example for the simulation of an anisotropic nitroxide spectrum (only 14N) in the fast-motion regime. >>> import EPRsim.EPRsim as sim >>> Ra = [335 ,350] >>> freq = 9.6 >>> g = [2.0083, 2.0061, 2.0022] >>> A = [12, 13, 110] >>> Nucs = '14N' >>> lw = [0.2, 0.2] >>> tcorr = 1e-10 >>> motion = 'fast' >>> Param = sim.Parameters(Range=Ra, g=g, A=A, Nucs=Nucs, mwFreq=freq, lw=lw, tcorr=corr, motion=motion) >>> B0, spc, flag = sim.simulate(Param) Simple example for the simulation of an anisotropic nitroxide spectrum (only 14N) in the solid-state regime. >>> import EPRsim.EPRsim as sim >>> import EPRsim.Tools as tool >>> P = sim.Parameters() >>> P.Range = [335 ,350] >>> P.mwfreq = 9.6 >>> P.g = [2.0083, 2.0061, 2.0022] >>> P.A = [[12, 13, 110], [20, 30, 30]] >>> P.Nucs = '14N,H' >>> P.lw = [0.5, 0.2] >>> P.motion = 'solid' >>> B0, spc, flag = sim.simulate(P) >>> tool.plot(B0, spc) Simple example for the simulation of an anisotropic nitroxide spectrum (only 14N) in the solid-state regime, coupled to an additional hydrogen nucleus. >>> import EPRsim.EPRsim as sim >>> import EPRsim.Tools as tool >>> P = sim.Parameters() >>> P.Range = [335 ,350] >>> P.mwfreq = 9.6 >>> P.g = [2.0083, 2.0061, 2.0022] >>> P.A = [[12, 13, 110], [20, 30, 30]] >>> P.Nucs = '14N,H' >>> P.lw = [0.5, 0.2] >>> P.motion = 'solid' >>> B0, spc, flag = sim.simulate(P) >>> tool.plot(B0, spc) Simple example for the simulation of two radical species. >>> import EPRsim.EPRsim as sim >>> import EPRsim.Tools as tool >>> P = sim.Parameters() >>> P.Range = [335 ,350] >>> P.mwfreq = 9.6 >>> P.g = [2.0083, 2.0061, 2.0022] >>> P.A = [12, 13, 110] >>> P.Nucs = '14N' >>> P.lw = [0.5, 0.2] >>> P.motion = 'solid' >>> P2 = sim.Parameters() >>> P2.Range = [335 ,350] >>> P2.mwfreq = 9.6 >>> P2.g = 2.0003 >>> P2.lw = [0.3, 0.0] >>> P2.motion = 'solid' >>> P2.weight = 0.1 >>> B0, spc, flag = sim.simulate([P, P2]) >>> tool.plot(B0, spc) Simple example for the simulation of a spin-polarized triplet spectrum. >>> import EPRsim.EPRsim as sim >>> import EPRsim.Tools as tool >>> P = sim.Parameters() >>> P.S = 1 >>> P.Range = [130 ,450] >>> P.mwfreq = 9.6 >>> P.g = 2 >>> P.lw = [4, 1] >>> P.D = [-1400, 20] >>> P.Population = [0.2, 0.3, 0.4] >>> P.Harmonic = 0 >>> B0, spc, flag = sim.simulate(P) >>> tool.plot(B0, spc) Properties ---------- EPRsim provides: - Simulation for cw-EPR spectra in the solid-state limit and fast-motion regime - Flexible simualtion options - Highly-optimized performance of the simulation algorithm - Various EPR-data processing function - Open-source Feedback -------- We are eager to hear about your experiences with GloPel. You can email me at stephan.rein@physchem.uni-freiburg.de. References ---------- [1] : S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42-55 [2] : N. M. Atherton, Principles of Electron Spin Resonance, 1993 Acknowledgement --------------- A number of people have helped shaping EPRsim and the ideas behind. First and foremost, Prof. Dr. Stefan Weber and Dr. Sylwia Kacprzak (now Bruker Biospin) were for years the driving force behind EPRsim.


نیازمندی

مقدار نام
>=0.10.0 cycler
>=1.0.1 kiwisolver
>=1.15.4 numpy
>=0.9.1 numpydoc
>=2.3.0 pyparsing
- python-dateutil
>=1.2.0 scipy
>=1.11.0 six
- matplotlib
>=0.4.3 sphinx-rtd-theme
>=0.26.0 llvmlite
>=0.41.0 numba
==0.41.0 numba
==0.26.0 llvmlite
==0.41.0 numb


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl EPRsim-0.0.4.dev0:

    pip install EPRsim-0.0.4.dev0.whl


نصب پکیج tar.gz EPRsim-0.0.4.dev0:

    pip install EPRsim-0.0.4.dev0.tar.gz