معرفی شرکت ها


EHRQC-0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package for performing QC on Electronic Health Record (EHR) data
ویژگی مقدار
سیستم عامل -
نام فایل EHRQC-0.4
نام EHRQC
نسخه کتابخانه 0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yashpal Ramakrishnaiah <ryashpal.ramakrishnaiah1@monash.edu>, Sonika Tyagi <sonika.tyagi@monash.edu>
ایمیل نویسنده ryashpal.ramakrishnaiah1@monash.edu, sonika.tyagi@monash.edu
آدرس صفحه اصلی https://github.com/ryashpal/EHRQC
آدرس اینترنتی https://pypi.org/project/EHRQC/
مجوز MIT
# EHRQC ## Introduction The performance of the Machine Learning (ML) models is primarily dependent on the underlying data on which it is trained on. Therefore, it is very essential to ensure that the training data is of the highest quality possible. It is a standard practice to perform operations related to handling of the missing values, and outliers before feeding it to machine learning algorithms, for which there are well established procedures and dedicated libraries currently. However, they are generic in nature and do not cover the domain specific nuances. For instance, non standard data sanity checks are to be performed in addition, to remove further errors in the Electronic Health Records (EHRs) that are specific to the medical domain. This utility is aimed at providing functions that can summarize the errors that are specific to the healthcare domain in the data through various visualizations. ## System architecture ![image](https://user-images.githubusercontent.com/56529301/133012627-875f2643-2d43-4e9e-b97b-8f0424cfa94e.png) ## Example Output Refer [demographics.html](https://github.com/ryashpal/EHRQC/blob/master/demographics.html), [vitals.html](https://github.com/ryashpal/EHRQC/blob/master/vitals.html), [lab_measurements.html](https://github.com/ryashpal/EHRQC/blob/master/lab_measurements.html), [vitals_anomalies.html](https://github.com/ryashpal/EHRQC/blob/master/vitals_anomalies.html), and [lab_measurements_anomalies.html](https://github.com/ryashpal/EHRQC/blob/master/lab_measurements_anomalies.html) ## Installation Guide Install the following libraries pip install numpy pip install matplotlib pip install yattag pip install scipy pip install sklearn pip install pandas Then install EHRQC pip install EHRQC ## User Guide ### Extract Demographic data from OMOP schema from qc.extract import extractOmopDemographics as extractOmopDemographics omopDemographicsDf = extractOmopDemographics() omopDemographicsDf.head() ### Extract Vitals data from OMOP schema from qc.extract import extractMimicOmopVitals as extractMimicOmopVitals mimicOmopVitalsDf = extractMimicOmopVitals() mimicOmopVitalsDf.head() ### Extract Lab Measurements data from OMOP schema from qc.extract import extractOmopLabMeasurements as extractOmopLabMeasurements omopLabMeasurementsDf = extractOmopLabMeasurements() omopLabMeasurementsDf.head() ### Extract Demographic data from MIMIC schema from qc.extract import extractMimicDemographics as extractMimicDemographics mimicDemographicsDf = extractMimicDemographics() mimicDemographicsDf.head() ### Extract Vitals data from MIMIC schema from qc.extract import extractMimicVitals as extractMimicVitals mimicVitalsDf = extractMimicVitals() mimicVitalsDf.head() ### Extract Lab Measurements data from MIMIC schema from qc.extract import extractMimicLabMeasurements as extractMimicLabMeasurements mimicLabMeasurementsDf = extractMimicLabMeasurements() mimicLabMeasurementsDf.head() ### Demographics Graphs Example 1 import qc.demographicsGraphs as demographicsGraphs data = [ [0, 1, 2, 'male', 'white', date.fromisoformat('2020-09-13'), date.fromisoformat('2021-09-13')], [2, 3, 4, np.nan, 'white', date.fromisoformat('2020-09-14'), date.fromisoformat('2021-09-13')], [4, 5, 6, 'female', 'black', date.fromisoformat('2020-09-15'), date.fromisoformat('2021-09-13')], [6, 7, 8, np.nan, 'asian', date.fromisoformat('2020-09-14'), date.fromisoformat('2021-09-13')]] demographicsGraphs.plot(pd.DataFrame(data, columns=['age', 'weight', 'height', 'gender', 'ethnicity', 'dob', 'dod'])) ### Demographics Graphs Example 2 import qc.demographicsGraphs as demographicsGraphs df = dbUtils._getDemographics() demographicsGraphs.plot(df) ### Vitals Graphs Example 1 import qc.vitalsGraphs as vitalsGraphs data = [ [0, 1, 2], [2, np.nan, 4], [4, 5, np.nan], [0, 1, 2], [2, 3, 4], [4, 5, np.nan], [0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, np.nan]] vitalsGraphs.plot(pd.DataFrame(data, columns=['heartrate', 'sysbp', 'diabp'])) ### Vitals Graphs Example 2 import qc.vitalsGraphs as vitalsGraphs df = dbUtils._getVitals() vitalsGraphs.plot(df) ### Lab Measurements Graphs Example 1 import qc.labMeasurementsGraphs as labMeasurementsGraphs data = [ [0, 1, 2], [2, np.nan, 4], [4, 5, np.nan], [0, 1, 2], [2, 3, 4], [4, 5, np.nan], [0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, np.nan]] labMeasurementsGraphs.plot(pd.DataFrame(data, columns=['glucose', 'hemoglobin', 'anion_gap'])) ### Lab Measurements Graphs Example 2 import qc.labMeasurementsGraphs as labMeasurementsGraphs df = dbUtils._getLabMeasurements() labMeasurementsGraphs.plot(df) ### Missing Data Imputation Method Comparison Example 1 import qc.missingDataImputation as missingDataImputation df = dbUtils._getVitals() df = df.dropna() meanR2, medianR2, knnR2, mfR2, emR2, miR2 = missingDataImputation.compare() print(meanR2, medianR2, knnR2, mfR2, emR2, miR2) ### Missing Data Imputation Method Comparison Example 2 import qc.missingDataImputation as missingDataImputation df = dbUtils._getLabMeasurements() df = df.dropna() meanR2, medianR2, knnR2, mfR2, emR2, miR2 = missingDataImputation.compare() print(meanR2, medianR2, knnR2, mfR2, emR2, miR2) ### Missing Data Imputation Example 1 import qc.missingDataImputation as missingDataImputation df = dbUtils._getVitals() imputedDf = missingDataImputation.impute(df, 'miss_forest') ### Vitals Anomaly Graphs Example import qc.vitalsAnomalies as vitalsAnomalies df = dbUtils._getVitals() vitalsAnomalies.plot(df) ### Lab Measurements Anomaly Graphs Example import qc.labMeasurementsAnomalies as labMeasurementsAnomalies df = dbUtils._getVitals() labMeasurementsAnomalies.plot(df) ### Running the Pipeline Example from qc.pipeline import run data = run(source='mimic', type='demographics', graph=True, impute_missing=True) print(data.head()) ## source -> Can be one of 'mimic' or 'omop' ## type -> Can be one of 'demographics', 'vitals', 'lab_measurements' ## graph -> If true, the EDA graph will be generated ## impute_missing -> If true, missing values will be imputed based on the best imputation method for the given data ## Acknowledgements <img src="https://user-images.githubusercontent.com/56529301/155898403-c453ab3f-df17-45c8-ac0a-b314461f5e8f.png" alt="the-alfred-hospital-logo" width="100"/> <img src="https://user-images.githubusercontent.com/56529301/155898442-ba8dcbb1-14dd-4c8b-96e6-e02c6a632c0e.png" alt="the-alfred-hospital-logo" width="150"/> <img src="https://user-images.githubusercontent.com/56529301/155898475-a5244ab5-e16e-4e5d-b562-6a89a7c2b7b7.png" alt="Superbug_AI_Branding_FINAL" width="150"/>


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl EHRQC-0.4:

    pip install EHRQC-0.4.whl


نصب پکیج tar.gz EHRQC-0.4:

    pip install EHRQC-0.4.tar.gz