معرفی شرکت ها


ECAUGT-1.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ECA Client
ویژگی مقدار
سیستم عامل -
نام فایل ECAUGT-1.0.6
نام ECAUGT
نسخه کتابخانه 1.0.6
نگهدارنده ['Minsheng Hao']
ایمیل نگهدارنده ['hmsh653@gmail.com']
نویسنده Yixin Chen & Haiyang Bian
ایمیل نویسنده chenyx19@mails.tsinghua.edu.cn
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/ECAUGT/
مجوز -
# ECAUGT **Caution: This package cannot work on Windows** ECAUGT is a package designed for customized *in data* cell sorting under the human Ensemble Cell Atalas (hECA). It contains the APIs to search and download data from the hECA's database. You are welcomed to use our web version at http://eca.xglab.tech/#/cellSorting You can also find more information at https://github.com/XuegongLab/ECAUGT and http://eca.xglab.tech/ecaugt/index.html ## About hECA hECA provides a platform for assembling massive scattered single-data into a unified Giant Table (uGT). We keeps exploring information framework and future ways of building and utilizing cell atlas. Here we provide entries for customized in data cell sorting, access to unified Hierarchical Annotation Framework (uHAF) and multifaceted portraits of genes, cell types and organs. hECA and ECAUGT are designed and developed by [XGlab](http://bioinfo.au.tsinghua.edu.cn/member/xuegonglab/ ) in Tsinghua University. Visit hECA's homepage at http://eca.xglab.tech/ Read our pre-print paper at https://www.biorxiv.org/content/10.1101/2021.07.21.453289v1 ## Install ``` pip install ECAUGT ``` ## Tutorial ### 1. Configuration #### 1.1 Load packages ```python import sys import pandas as pd import ECAUGT import time import multiprocessing import numpy as np ``` #### 1.2 Connect to server ```python # set parameters endpoint = "https://HCAd-Datasets.cn-beijing.ots.aliyuncs.com" access_id = "LTAI5t7t216W9amUD1crMVos" #enter your id and keys access_key = "ZJPlUbpLCij5qUPjbsU8GnQHm97IxJ" instance_name = "HCAd-Datasets" table_name = 'HCA_d' ``` ```python # setup client ECAUGT.Setup_Client(endpoint, access_id, access_key, instance_name, table_name) ``` #### 1.3 Build index We should check if the index has been built. ```python ECAUGT.build_index() ``` ### 2. Search cell with metadata condition Conditions are presented in a structured string which is a combination of several logical expressions. Each logical expression should be in the following forms: field_name1 == value1, here '==' means equal field_name2 <> value2, here '<>' means unequal Three symbols are used for logical operation between expressions: logical_expression1 && logical_expression2, here '&&' means AND operation logical_expression1 || logical_expression2, here '||' means OR operation ! logical_expression1, here '!' means not NOT operation Brackets are allowed and the priorities of the logical operations are as common. The metadata condition string is also robust to the space character. ```python # get primary keys rows_to_get = ECAUGT.query_cells("organ == Lung && cell_type == T cell ") ``` The variable rows_to_get is a list containing their primary keys. ### 3. Download data We first download three columns of the queried cells and return them in the DataFrame form. (The first column in the result is the primary keys) For illustration, we only download the first 20 cells. ```python rows_to_get_2 = rows_to_get[0:20] ``` #### 3.1 Download interested columns ```python # download data in pandas::DataFrame from ECAUGT.get_columnsbycell_para(rows_to_get = rows_to_get_2, cols_to_get=['cl_name','uHAF_name','cell_type'], col_filter=None, do_transfer = True, thread_num = multiprocessing.cpu_count()-1) ``` Then we show how the result will look like when we don't do transform. ```python # download data in list from ECAUGT.get_columnsbycell_para(rows_to_get = rows_to_get_2, cols_to_get=['cl_name','uHAF_name','cell_type'], col_filter=None, do_transfer = False, thread_num = multiprocessing.cpu_count()-1) ``` #### 3.2 Download all columns We also compare the time consumption between parallel and unparallel cell download processes for the first 20 cells, and find the parallel process only takes about 1/3 time. ```python # the parallel version start_time = time.time() result = ECAUGT.get_columnsbycell_para(rows_to_get = rows_to_get_2, cols_to_get=None, col_filter=None, do_transfer = False, thread_num = multiprocessing.cpu_count()-1) time.time()-start_time ``` ```python # the unparallel version start_time = time.time() result = ECAUGT.get_columnsbycell(rows_to_get = rows_to_get_2, cols_to_get=None,col_filter=None,do_transfer = False) time.time()-start_time ``` ### 4. Search cell with both metadata condition and gene condition Now we show hot to add gene conditions when downloading cells. Here we download some genes of the queried cells and select the cells whose expression level on PTPRC is larger than 0.1 and experssion level on CD3D is no less than 0.1 ```python # add col_filter on gene gene_condition = ECAUGT.seq2filter("PTPRC > 0.1 && CD3D>=0.1") ``` #### 4.1 Download some of the columns ```python df_result = ECAUGT.get_columnsbycell_para(rows_to_get = rows_to_get, cols_to_get=['CD3D','PTPRC','donor_id','uHAF_name'], col_filter=gene_condition, do_transfer = True, thread_num = multiprocessing.cpu_count()-1) ``` We can find that 7403 cells among the 14870 queried cells has expression levels that satisfy PTPRC > 0.1 && CD3D>=0.1. Then we can download some columns of these cells with the parameter ***cols_to get*** and the genes involved in the condition must be included in the #### 4.2 Download all columns of these cells We can get all expression levels and metadatas of these cells by setting the parameter ***cols_to_get*** as None ```python df_result = ECAUGT.get_columnsbycell_para(rows_to_get = rows_to_get, cols_to_get=None, col_filter=gene_condition, do_transfer = True, thread_num = multiprocessing.cpu_count()-1) ```


نیازمندی

مقدار نام
>=5.2.1 tablestore
- numpy
- pandas


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl ECAUGT-1.0.6:

    pip install ECAUGT-1.0.6.whl


نصب پکیج tar.gz ECAUGT-1.0.6:

    pip install ECAUGT-1.0.6.tar.gz