معرفی شرکت ها


Dovetail-1.0beta3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A light-weight, multi-platform, build tool for Python with Continuous Integration servers like Jenkins in mind.
ویژگی مقدار
سیستم عامل -
نام فایل Dovetail-1.0beta3
نام Dovetail
نسخه کتابخانه 1.0beta3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Andrew Alcock, Aviser LLP, Singapore
ایمیل نویسنده dovetail@aviser.asia
آدرس صفحه اصلی http://www.aviser.asia/dovetail
آدرس اینترنتی https://pypi.org/project/Dovetail/
مجوز GPLv3+
Introducing Dovetail ==================== Dovetail is a light-weight, multi-platform build tool for Python with Continuous Integration servers like Jenkins in mind. ----- **TL;DR** Builds are complex, integrate many tools and sometimes must run on many platforms. Writing good build scripts is hard. Dovetail helps in all these areas, and is not a rip'n'replace for your existing tools. You can readily automate a build using Dovetail. ----- Building an application is not just running:: > python setup.py sdist What about: * Building binary distributions *for several target platforms* * Building the user documentation *and* the API docs? * Running your unit tests, sometimes using several test frameworks? * Installing your application in a clean virtual environment and running user tests? * Running code quality tools like `Coverage <http://http://nedbatchelder.com/code/coverage/>`_ and `Pylint <http://pypi.python.org/pypi/pylint/>`_? * Tagging your code in your DVCS? * Uploading the artifacts to a repository? That's probably at least an Egg, a source distribution, documentation and your web site **How can you guarantee everyone, especially the new team members, are building in the same way?** Many teams solve this by writing scripts, but that raises more questions: * Do you have a *lot of scripts* lying around, each doing their own thing, and little shared code? * Do you have *operating system specific scripts* that do the same thing, but on different operating systems? * Are your scripts *reliable* and *maintainable*? If you need to improve in these areas, **Dovetail can help**. Dovetail: * Is **pure Python**, so the build runs everywhere and is maintainable * Provides a **simple API** to externalize many common build requirements * There are **no new configuration file formats** or 4GLs of abstruse XML or other syntaxes * Makes it simple to **query the build environment** and adjust the build appropriately * **Audits all the build steps and decisions** * Properly **catches build errors** and displays the details of what went wrong * Makes it terribly easy to **automate the build** in a tool like `Jenkins <http://jenkins-ci.org/>`_. A nice unexpected benefit for the maintainer was that it has become easier to build in my IDE; I also get precisely the same build from the command line. Dovetail does not replace `Setuptools <http://pypi.python.org/pypi/setuptools/>`_ or `distutils <http://docs.python.org/distutils/introduction.html>`_ - these are the perfect tools for the specific build step of creating a distributable package. Functionality ------------- A Dovetail build script is *a standard Python script*. Functions are declared to be *tasks* in the build by decorating them. Further decorators declare: * *Task dependencies*, with the same build script or across related files * *Required packages*, which are downloaded and installed if not present * *Conditions*, such as tests on environment variables or the file system. * Build *directory structure* * *Error conditions*, such as a non-zero return or output in stderr. Dovetail works with numerous other tools to automate build steps, and has built-in integration with `Virtualenv <http://http://www.virtualenv.org/>`_. Any build can be run in either the Python version on the path, or any nominated virtual environment. Dovetail installs packages as required, even in the middle of a build. This means that you run a simple task in a complex build without installing all the documentation and test packages. Example ------- A trivial example of a Dovetail build script is given below. It uses `Sphinx <http://sphinx.pocoo.org/>`_ to build the project documentation:: from dovetail import task, requires, check_result, call, mkdirs, do_if, IsDir from os import path from shutil import rmtree DOCSOURCE = path.abspath(path.join(path.dirname(__file__), "source")) BUILD = path.abspath(path.join(path.dirname(__file__), "..", "build")) @task # Declares the function clean() is a build task @do_if(IsDir(BUILD)) # Only run if the build directory exists def clean(): """Clean the project of all build artifacts""" rmtree(BUILD) @task # Declares the function clean() is a build task @requires('sphinx') # Ensures the sphinx package is installed @mkdirs(BUILD) # Make the build directory if it doesn't exist @check_result # Fails the build if sphinx fails def doc(): """Builds the Sphinx User documentation""" return call("sphinx-build {0} {1}".format(DOCSOURCE, BUILD).split(' ')) Builds are run simply from the OS command line:: $ dovetail clean doc


نحوه نصب


نصب پکیج whl Dovetail-1.0beta3:

    pip install Dovetail-1.0beta3.whl


نصب پکیج tar.gz Dovetail-1.0beta3:

    pip install Dovetail-1.0beta3.tar.gz