معرفی شرکت ها


Djaq-1.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A string-based Django query language
ویژگی مقدار
سیستم عامل -
نام فایل Djaq-1.0.9
نام Djaq
نسخه کتابخانه 1.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Paul Wolf
ایمیل نویسنده paul.wolf@yewleaf.com
آدرس صفحه اصلی https://github.com/paul-wolf/djaq
آدرس اینترنتی https://pypi.org/project/Djaq/
مجوز MIT
Djaq ==== |Python tests| |RTD build| |Python versions| |PyPi version| .. |Python tests| image:: https://github.com/paul-wolf/djaq/actions/workflows/run_unit_tests.yml/badge.svg :target: https://github.com/paul-wolf/djaq/actions/workflows/run_unit_tests.yml :alt: Unit test status .. |RTD build| image:: https://readthedocs.org/projects/djaq/badge/?version=latest :target: https://djaq.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. |Python versions| image:: https://img.shields.io/pypi/pyversions/djaq?color=brightgreen :alt: PyPI - Python Version .. |PyPi version| image:: https://badge.fury.io/py/Djaq.svg :target: https://badge.fury.io/py/Djaq :alt: PyPi Version Djaq - pronounced “Jack” - is an alternative to the Django QuerySet API. What sets it apart: * No need to import models * Clearer, more natural query syntax * More powerful expressions * More consistent query syntax without resorting to idiosyncratic methods like ``F()`` expressions, ``annotate()``, ``aggregate()`` * Column expressions are entirely evaluated in the database * Extensible: you can write your own functions * Pandas: Easily turn a query into Pandas Dataframe There is also a JSON representation of queries, so you can send queries from a client. It's an instant API to your data. No need to write backend classes and serializers. Djaq queries are strings. A query string for our example dataset might look like this: .. code:: shell DQ("Book", "name as title, publisher.name as publisher").go() This retrieves a list of book titles with book publisher. But you can formulate far more sophisticated queries; see below. You can send Djaq queries from any language, Java, Javascript, golang, etc. to a Django application and get results as JSON. In contrast to REST frameworks, like TastyPie or Django Rest Framework (DRF), you have natural access to the Django ORM from the client. Djaq sits on top of the Django ORM. It can happily be used alongside QuerySets. - `Documentation <https://djaq.readthedocs.io>`__ - `Installation <https://djaq.readthedocs.io/en/latest/installation.html>`__ - `Settings <https://djaq.readthedocs.io/en/latest/settings.html>`__ - `Query Usage <https://djaq.readthedocs.io/en/latest/query_usage.html>`__ - `Sample Project <https://djaq.readthedocs.io/en/latest/sample_project.html>`__ Here's an example comparison between Djaq and Django QuerySets that gets every publisher and counts the books for each that are above and below a rating threshold. .. code:: python DQ("Book", """publisher.name, sumif(rating < 3, 1, 0) as below_3, sumif(rating >= 3, 1, 0) as above_3 """) compared to QuerySet: .. code:: python from django.db.models import Count, Q above_3 = Count('book', filter=Q(book__rating__gt=3)) below_3 = Count('book', filter=Q(book__rating__lte=3)) Publisher.objects.annotate(below_3=below_3).annotate(above_3=above_3) Get average, maximum, minimum price of books: .. code:: python DQ("Book", "avg(price), max(price), min(price)") compared to QuerySet: .. code:: python Book.objects.aggregate(Avg('price'), Max('price'), Min('price')) Get the difference from the average off the maximum price for each publisher: .. code:: python DQ("Book", "publisher.name, max(price) - avg(price) as price_diff") compared to QuerySet: .. code:: python from django.db.models import Avg, Max Book.objects.values("publisher__name") \ .annotate(price_diff=Max('price') - Avg('price'))


نحوه نصب


نصب پکیج whl Djaq-1.0.9:

    pip install Djaq-1.0.9.whl


نصب پکیج tar.gz Djaq-1.0.9:

    pip install Djaq-1.0.9.tar.gz