معرفی شرکت ها


DeerNet-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

a library used for stacking based on scikit-learn
ویژگی مقدار
سیستم عامل -
نام فایل DeerNet-0.0.2
نام DeerNet
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ruochi Zhang
ایمیل نویسنده zrc720@gmail.com
آدرس صفحه اصلی https://github.com/zhangruochi/DeerNet
آدرس اینترنتی https://pypi.org/project/DeerNet/
مجوز MIT License
# SKNet ## Introduction SKNet is a new type of neural network that is simple in structure but complex in neuron. Each of its neuron is a traditional estimator such as SVM, RF, etc. ## Fetaures We think that such a network has many applicable scenarios. For example: - We don't have enough samples to train neural networks. - We hope to improve the accuracy of the model by means of emsemble. - We hope to learn some new features. - We want to save a lot of parameter-tuning time while getting a stable and good model. ## Installation ```python3 pip install sknet ``` ## Example ## Computation Graph ![](./computation_graph.png) ### Code ```python from sknet.sequential import Layer,Sequential,SKNeuron from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.svm import LinearSVR from sklearn.linear_model import LogisticRegression from sklearn.ensemble import GradientBoostingRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split data = load_breast_cancer() features = data.data target = data.target X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42) layer1 = Layer([ SKNeuron(RandomForestRegressor,params = {"random_state": 0}), SKNeuron(GradientBoostingRegressor,params = {"random_state": 0}), SKNeuron(AdaBoostRegressor,params = {"random_state": 0}), SKNeuron(KNeighborsRegressor), SKNeuron(ExtraTreesRegressor,params = {"random_state": 0}), ]) layer2 = Layer([ SKNeuron(AdaBoostRegressor,params = {"random_state": 0}), SKNeuron(LinearSVR,params = {"random_state": 0}), ]) layer3 = Layer([ SKNeuron(LogisticRegression,params = {"random_state": 0}), ]) model = Sequential([layer1,layer2,layer3],n_splits = 5) y_pred = model.fit_predict(X_train,y_train, X_test) print(model.score(y_test,y_pred)) # acc = 0.9736842105263158 ``` ## How to construct the SkNet ## General Considerations(不用严格遵守) 1. introduce more information on first level 2. use simpler model for Subquent level ## How to introduce more information? 1. use different estimator 2. use same estimator but differences parameters(such as random seed, ...) 3. simpling samples 4. simpleing features 5. different feature engineering techniques (one-hot, embedding, ...) ### first level Tips 1. Diversity based on algo - 2-3 gradient boosted trees(xgboost, H2O, catboost) - 2-3 Neural Net (keras, pyTorch) - 1-2 ExtraTree/ Random Forest( sklearn) - 1-2 Linear models as in Logistic/ridge regression, linearsvm(sklearn) - 1-2 knn models(sklearn) - 1 Factorization machine (libfm) - 1 svm with nonlinear kernel if size/memory allows(sklearn) - 1 svm with nonlinear kernel if size/memory allows(sklearn) 2. Diversity based on input data - Categorical features: One hot, label encoding, target encoding, frequency. - Numberical features: outliner, binning, derivatives, percentiles, scaling - Interactions: col1 \*/+-col2, groupby, unsupervied - For classification target, we can use regression models in middle level ### Subquent level tips 1. Simpler(or shallower) algo - gradient boosted tree with small depth(2 or 3) - linear models with high reglarization - Extra Trees - Shallow network - Knn with BrayCurtis Distance - Brute forcing a seach for best linear weights based on cv 2. Feature engineering - parwise differences between meta features - row-wise statics like average or stds - Standard feature selection techniques ## Todo - Two or three level stacking - multi-processing - features proxy


نحوه نصب


نصب پکیج whl DeerNet-0.0.2:

    pip install DeerNet-0.0.2.whl


نصب پکیج tar.gz DeerNet-0.0.2:

    pip install DeerNet-0.0.2.tar.gz