معرفی شرکت ها


DISAtool-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A library used to assess the informative and discriminative properties of subspaces/patterns
ویژگی مقدار
سیستم عامل -
نام فایل DISAtool-1.0.1
نام DISAtool
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده L. Alexandre, R.S. Costa, R. Henriques
ایمیل نویسنده leonardoalexandre@tecnico.ulisboa.pt
آدرس صفحه اصلی https://github.com/JupitersMight/DISA
آدرس اینترنتی https://pypi.org/project/DISAtool/
مجوز -
# DISA DISA (**D**iscriminative and **I**nformative **S**ubspace **A**nalysis), a software package in Python (v3.7) capable of assessing patterns with numerical outputs by statistically testing the correlation gain of the subspace against the overall space ## Input parameters data : pandas.Dataframe patterns : A python list where each position is a dictionary with the pattern properties: [i] : { "lines" : list (mandatory) "columns" : list (mandatory) "column_values": list (optional) "noise": list (optional) "type" : string (optional) } Description of parameters: - "lines" refers to the observations of the pattern - "columns" refers to the variables of the pattern - "column_values" refers to the pattern coherence on columns - "noise" refers to the noise allowed in each column - "type" refers to the type of coherence (by default we assume constant coherence) outcome : dict { "values": pandas.Series (mandatory) "outcome_value" : int (optional) "type": string (optional) "method": string (optional) "heuristic": boolean (optional) } Description of parameters: - "values" the outcome variable - "outcome_value" : if the outcome variable is categorical the user can force DISA to analyse according to a specific category, we assume the category is represented by a discrete value. (by default it will select the best category per pattern) - "type": if the user wishes to analyse a continuous outcome variable this field should take the value "Numerical" (by default it is assumed to be categorical) - "method": if in the "type" parameter the user inputted "Numerical" then this field can be filled in with: - "min_max" - uses the minimum and the maximum values of each pattern to define the pattern-conditioned outcome intervals - "average" - uses the average +- standard deviation of each pattern to define the pattern-conditioned outcome intervals - "gaussian" (default) - assumes both the pattern-conditioned outcome and the outcome variable follow a normal distribution to define the pattern-conditioned outcome intervals - "empirical" - uses the empirical distribution of the pattern-conditioned outcome and outcome variables to define the pattern-conditioned outcome intervals - "heuristic": if in the "method" parameter the user inputted "empirical" then this field can be used to optimize the discriminative properties of each pattern output_configurations : dict (optional) { "print_table" : boolean "file_path_table" : string "show_plots" : boolean "file_path_plots" : string "print_numeric_intervals" : boolean "file_path_numeric_intervals" : string } Description of parameters: - "print_table" : if set to True will output a table of results (by default it is set to True) - "file_path_table" : path to file to write the output table to (by default it is set to None) - "show_plots" : if the "method" parameters in the outcome parameter was set to "gaussian" or "empirical" then this parameter if set to True will plot a figure (by default it is set to False) - "file_path_plots" : if the "method" parameters in the outcome parameter was set to "gaussian" or "empirical" then the path to a folder can be set in this parameter to output a PNG of the figures (by default it is set to None) - "print_numeric_intervals" : if the "type" parameter in the outcome parameter was set to "Numerical" then this parameter can be set to True to output the interval that the pattern discriminates (by default it is set to False) - "file_path_numeric_intervals" : if the "type" parameter in the outcome parameter was set to "Numerical" then the path to a folder can be set in this parameter to output to a file the intervals that each pattern discriminates ## Dataset examples Four examples on how to use DISA are provided in the folder "Example", the Echocardiogram, the Liver Disorders, the Breast Cancer Wisconsin (diagnostic), and Dodecanol datasets. Inside each of the datasets corresponding folder you will find a set of files and a folder. The python and jupyter notebook files provide the code to analyse patterns using DISA. The patterns are contained in the .txt files and the processed datasets in both the .csv and .arff files. ## Package dependencies pandas - 1.4.3 numpy - 1.23.1 scipy - 1.8.1 prettytable - 3.3.0 matplotlib - 3.5.1 ## Metrics A list of all the implemented metrics in DISA and the corresponding DOI (some but not all of these metrics are futher explained in https://mhahsler.github.io/arules/docs/measures). Information Gain: https://doi.org/10.1016/S0306-4379(03)00072-3 Chi-squared: https://doi.org/10.1145/253260.253327 Gini index: https://doi.org/10.1016/S0306-4379(03)00072-3 Difference in Support: 10.1109/TKDE.2010.241 Bigger Support: 10.1109/TKDE.2010.241 Confidence: 10.1145/170036.170072 All-Confidence: 10.1109/TKDE.2003.1161582 Lift: 10.1145/170036.170072 Standardised Lift: https://doi.org/10.1016/j.csda.2008.03.013 Collective Strength: https://dl.acm.org/doi/pdf/10.1145/275487.275490 Cosine: https://doi.org/10.1016/S0306-4379(03)00072-3 Interestingness: arXiv:1202.3215 Comprehensibility: arXiv:1202.3215 Completeness: arXiv:1202.3215 Added Value: https://doi.org/10.1016/S0306-4379(03)00072-3 Casual Confidence: https://doi.org/10.1007/3-540-44673-7_1 Casual Support: https://doi.org/10.1007/3-540-44673-7_1 Certainty Factor: 10.3233/IDA-2002-6303 Conviction: 10.1145/170036.170072 Coverage (Support): 10.1145/170036.170072 Descriptive Confirmed Confidence: https://doi.org/10.1016/S0306-4379(03)00072-3 Difference of Proportions: https://doi.org/10.1007/s001800100075 Example and Counter Example: SEBAG, M.; SCHOENAUER, M. Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases. In: Proc. of EKAW. 1988. p. 28. Imbalance Ratio: https://doi.org/10.1007/s10618-009-0161-2 Fisher's Exact Test (p-value): 10.3233/IDA-2007-11502 Hyper Confidence: 10.3233/IDA-2007-11502 Hyper Lift: 10.3233/IDA-2007-11502 Laplace Corrected Confidence: https://doi.org/10.1016/S0306-4379(03)00072-3 Importance: https://docs.microsoft.com/en-us/analysis-services/data-mining/microsoft-association-algorithm-technical-reference?view=asallproducts-allversions&viewFallbackFrom=sql-server-ver15 Jaccard Coefficient: https://doi.org/10.1016/S0306-4379(03)00072-3 J-Measure: NII Article ID (NAID) 10011699020 Kappa: https://doi.org/10.1016/S0306-4379(03)00072-3 Klosgen: https://doi.org/10.1016/S0306-4379(03)00072-3 Kulczynski: https://doi.org/10.1007/s10618-009-0161-2 Goodman-Kruskal's Lambda: https://doi.org/10.1016/S0306-4379(03)00072-3 Least Contradiction: (2004) Extraction de pepites de connaissances dans les donnees: Une nouvelle approche et une etude de sensibilite au bruit. In Mesures de Qualite pour la fouille de donnees. Revue des Nouvelles Technologies de l’Information, RNTI author : Aze, J. and Y. Kodratoff Lerman Similarity: (1981) Classification et analyse ordinale des données. Author : Lerman, Israel-César. Piatetsky-Shapiro: NII Article ID (NAID) 10000000985 Max Confidence: https://doi.org/10.1016/S0306-4379(03)00072-3 Odds Ratio: https://doi.org/10.1016/S0306-4379(03)00072-3 Phi Correlation Coefficient: https://doi.org/10.1016/S0306-4379(03)00072-3 Ralambondrainy: DIATTA, Jean; RALAMBONDRAINY, Henri; TOTOHASINA, André. Towards a unifying probabilistic implicative normalized quality measure for association rules. In: Quality Measures in Data Mining. Springer, Berlin, Heidelberg, 2007. p. 237-250. Relative Linkage Disequilibrium: https://doi.org/10.1007/978-3-540-70720-2_15 Relative Risk: https://doi.org/10.1148/radiol.2301031028 Rule Power Factor:https://doi.org/10.1016/j.procs.2016.07.175 Sebag-Schoenauer : SEBAG, M.; SCHOENAUER, M. Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases. In: Proc. of EKAW. 1988. p. 28. Yule Q: https://doi.org/10.1016/S0306-4379(03)00072-3 Yule Y: https://doi.org/10.1016/S0306-4379(03)00072-3 Weighted Support: https://doi.org/10.1016/j.patcog.2021.107900 Weighted Rule Support: https://doi.org/10.1016/j.patcog.2021.107900 Weighted Confidence: https://doi.org/10.1016/j.patcog.2021.107900 Weighted Lift: https://doi.org/10.1016/j.patcog.2021.107900 Statistical Significance: https://doi.org/10.1007/s10618-017-0521-2 FleBiC Score: https://doi.org/10.1016/j.patcog.2021.107900 ## Authors DISA was developed by: L. Alexandre (leonardoalexandre@tecnico.ulisboa.pt), R.S. Costa (rs.costa@fct.unl.pt) and R. Henriques


نیازمندی

مقدار نام
==1.8.1 scipy
- prettytable
- matplotlib
- numpy


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl DISAtool-1.0.1:

    pip install DISAtool-1.0.1.whl


نصب پکیج tar.gz DISAtool-1.0.1:

    pip install DISAtool-1.0.1.tar.gz