معرفی شرکت ها


DFO-LS-1.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A flexible derivative-free solver for (bound constrained) nonlinear least-squares minimization
ویژگی مقدار
سیستم عامل -
نام فایل DFO-LS-1.3.0
نام DFO-LS
نسخه کتابخانه 1.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lindon Roberts
ایمیل نویسنده lindon.roberts@anu.edu.au
آدرس صفحه اصلی https://github.com/numericalalgorithmsgroup/dfols/
آدرس اینترنتی https://pypi.org/project/DFO-LS/
مجوز GNU GPL
=================================================== DFO-LS: Derivative-Free Optimizer for Least-Squares =================================================== .. image:: https://github.com/numericalalgorithmsgroup/dfols/actions/workflows/python_testing.yml/badge.svg :target: https://github.com/numericalalgorithmsgroup/dfols/actions :alt: Build Status .. image:: https://img.shields.io/badge/License-GPL%20v3-blue.svg :target: https://www.gnu.org/licenses/gpl-3.0 :alt: GNU GPL v3 License .. image:: https://img.shields.io/pypi/v/DFO-LS.svg :target: https://pypi.python.org/pypi/DFO-LS :alt: Latest PyPI version .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2630426.svg :target: https://doi.org/10.5281/zenodo.2630426 :alt: DOI:10.5281/zenodo.2630426 DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_. This is an implementation of the algorithm from our paper: C. Cartis, J. Fiala, B. Marteau and L. Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint <https://arxiv.org/abs/1804.00154>`_]. For reproducibility of all figures in this paper, please feel free to contact the authors. If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS. Documentation ------------- See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_. Citation -------- If you use DFO-LS in a paper, please cite: Cartis, C., Fiala, J., Marteau, B. and Roberts, L., `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41. Requirements ------------ DFO-LS requires the following software to be installed: * Python 2.7 or Python 3 (http://www.python.org/) Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_): * NumPy 1.11 or higher (http://www.numpy.org/) * SciPy 0.18 or higher (http://www.scipy.org/) * Pandas 0.17 or higher (http://pandas.pydata.org/) **Optional package:** DFO-LS versions 1.2 and higher also support the `trustregion <https://github.com/lindonroberts/trust-region>`_ package for fast trust-region subproblem solutions. To install this, make sure you have a Fortran compiler (e.g. `gfortran <https://gcc.gnu.org/wiki/GFortran>`_) and NumPy installed, then run :code:`pip install trustregion`. You do not have to have trustregion installed for DFO-LS to work, and it is not installed by default. Installation using pip ---------------------- For easy installation, use `pip <http://www.pip-installer.org/>`_ as root: .. code-block:: bash $ [sudo] pip install DFO-LS or alternatively *easy_install*: .. code-block:: bash $ [sudo] easy_install DFO-LS If you do not have root privileges or you want to install DFO-LS for your private use, you can use: .. code-block:: bash $ pip install --user DFO-LS which will install DFO-LS in your home directory. Note that if an older install of DFO-LS is present on your system you can use: .. code-block:: bash $ [sudo] pip install --upgrade DFO-LS to upgrade DFO-LS to the latest version. Manual installation ------------------- Alternatively, you can download the source code from `Github <https://github.com/numericalalgorithmsgroup/dfols>`_ and unpack as follows: .. code-block:: bash $ git clone https://github.com/numericalalgorithmsgroup/dfols $ cd dfols DFO-LS is written in pure Python and requires no compilation. It can be installed using: .. code-block:: bash $ [sudo] pip install . If you do not have root privileges or you want to install DFO-LS for your private use, you can use: .. code-block:: bash $ pip install --user . instead. To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`setup.py`) and rerun the installation using :code:`pip`, as above: .. code-block:: bash $ git pull $ [sudo] pip install . # with admin privileges Testing ------- If you installed DFO-LS manually, you can test your installation by running: .. code-block:: bash $ python setup.py test Alternatively, the HTML documentation provides some simple examples of how to run DFO-LS. Examples -------- Examples of how to run DFO-LS are given in the `documentation <https://numericalalgorithmsgroup.github.io/dfols/>`_, and the `examples <https://github.com/numericalalgorithmsgroup/dfols/tree/master/examples>`_ directory in Github. Uninstallation -------------- If DFO-LS was installed using *pip* you can uninstall as follows: .. code-block:: bash $ [sudo] pip uninstall DFO-LS If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory). Bugs ---- Please report any bugs using GitHub's issue tracker. License ------- This algorithm is released under the GNU GPL license. Please `contact NAG <http://www.nag.com/content/worldwide-contact-information>`_ for alternative licensing.


نحوه نصب


نصب پکیج whl DFO-LS-1.3.0:

    pip install DFO-LS-1.3.0.whl


نصب پکیج tar.gz DFO-LS-1.3.0:

    pip install DFO-LS-1.3.0.tar.gz