معرفی شرکت ها


CytoSig-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Prediction model for cytokine signaling activity
ویژگی مقدار
سیستم عامل -
نام فایل CytoSig-0.0.2
نام CytoSig
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Peng Jiang
ایمیل نویسنده peng.jiang@nih.gov
آدرس صفحه اصلی https://github.com/data2intelligence/CytoSig
آدرس اینترنتی https://pypi.org/project/CytoSig/
مجوز -
CytoSig prediction model of cytokine signaling activity **Prerequisite**: 1, ridge_significance: https://github.com/data2intelligence/ridge_significance Please read its README.md and run test to make sure the successful installation. 2, pandas >= 1.1.4: You may install anaconda (https://www.anaconda.com) to include all required python packages. 3, xlsxwriter >= 1.3.7: pip install --upgrade xlsxwriter **Install**: python setup.py install **Test**: python -m unittest tests.prediction Please see **tests/prediction.py** for examples of two usages explained below. **Usage 1, through command line**: CytoSig_run.py -i input_profile -o output_prefix -r random_count -a penalty_alpha -e generate_excel -s expand_signature 1, input_profile: input matrix of biological profiles. Each column is a biological condition, and each row should be a human gene symbol. Please see "tests/GSE147507.diff.gz" as an example. The expression values, from either RNASeq or MicroArray, should be transformed by log2(x+1). x could be FPKM, RPKM, or TPM for RNASeq. For single-cell RNASeq data, we used log2(TPM/10 + 1). We also recommend quantile-normalization across conditions. Some software package, such as RMA or DESeq, will automatically include all normalizations. We recommend input differential profiles between the two conditions. If data is from a sample collection without pairs, please mean-centralize the value of each gene across all samples. 2, output_prefix: prefix of output files. Each column is a biological condition, and each row is a cytokine name output_prefix.Coef: regression coefficients output_prefix.StdErr: standard error output_prefix.Zscore: Coef/StdErr output_prefix.Pvalue: two-sided test p-value of Zscore, from permutation test if random_count > 0 or student t-test if random_count = 0 output_prefix.xlsx: only exist if generate_excel = 1. A excel summary of results, with each input condition as one tab 3, random_count: number of randomizations in the permutation test, with a default value 1000. If value is 0, the program will use student t-test. 4, penalty_alpha: penalty weight in the ridge regression, with a default value 10000. 5, generate_excel: whether generate excel output. The value could be 1 (Yes) or 0 (No) with a default value 0. This option is only effective when the input condition count is less than 50. 6, expand_signature: whether use an expanded signature of cytokine response. Our initial cytokine response signature included 43 cytokines with high confidence data. However, we can also set a less stringent filter to include 51 cytokines. Example: In the directory of README.md, please type: CytoSig_run.py -i tests/GSE147507.diff.gz -o tests/output_test -e 1 Then, open "tests/output_test.xlsx" to view results **Usage 2, through Python function inside your customized code**: Input: Y: the expression matrix of your samples in pandas data frame. Each column name is a sample ID. Each row name is a human gene symbol. Output: four pandas data frames beta: regression coefficients std: standard errors of coefficients zscore: beta/std pvalue: statistical significance Then, use the following code snippet in your program: import os, sys, pandas, CytoSig signature = os.path.join(sys.prefix, 'bin', 'signature.centroid') # load cytokine response signature installed in your python system path signature = pandas.read_csv(signature, sep='\t', index_col=0) beta, std, zscore, pvalue = CytoSig.ridge_significance_test(signature, Y, alpha=1E4, alternative="two-sided", nrand=1000, cnt_thres=10, flag_normalize=True, verbose = True)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl CytoSig-0.0.2:

    pip install CytoSig-0.0.2.whl


نصب پکیج tar.gz CytoSig-0.0.2:

    pip install CytoSig-0.0.2.tar.gz