معرفی شرکت ها


Covid19India-0.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python3 Library to get India's Covid-19 Patient Count.
ویژگی مقدار
سیستم عامل -
نام فایل Covid19India-0.0.5
نام Covid19India
نسخه کتابخانه 0.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Suraj Deshmukh
ایمیل نویسنده surajdeshmukh96@gmail.com
آدرس صفحه اصلی https://github.com/suraj-deshmukh/Covid19India
آدرس اینترنتی https://pypi.org/project/Covid19India/
مجوز MIT LICENSE
# Covid19India A Python3 Library to get India's Covid-19 Patient Count. # Installation pip3 install Covid19India # Requirements * requests * BeautifulSoup ## Usage ### To get India's total count In [1]: from Covid19India import CovidIndia In [2]: obj = CovidIndia() In [3]: stats = obj.getstats() In [4]: stats['total'] Out[4]: {'active': 44029, 'recovered': 20917, 'deaths': 2206, 'confirmed': 67152} ### To get State and UT wise data In [5]: stats['states'] Out[5]: {'Andaman and Nicobar Islands': {'active': 0, 'recovered': 33, 'confirmed': 33, 'deaths': 0}, 'Andhra Pradesh': {'active': 1010, 'recovered': 925, 'confirmed': 1980, 'deaths': 45}, 'Arunachal Pradesh': {'active': 0, 'recovered': 1, 'confirmed': 1, 'deaths': 0}, 'Assam': {'active': 27, 'recovered': 34, 'confirmed': 63, 'deaths': 2}, 'Bihar': {'active': 325, 'recovered': 365, 'confirmed': 696, 'deaths': 6}, 'Chandigarh': {'active': 143, 'recovered': 24, 'confirmed': 169, 'deaths': 2}, 'Chhattisgarh': {'active': 10, 'recovered': 49, 'confirmed': 59, 'deaths': 0}, 'Dadar Nagar Haveli': {'active': 1, 'recovered': 0, 'confirmed': 1, 'deaths': 0}, 'Delhi': {'active': 4781, 'recovered': 2069, 'confirmed': 6923, 'deaths': 73}, 'Goa': {'active': 0, 'recovered': 7, 'confirmed': 7, 'deaths': 0}, 'Gujarat': {'active': 5156, 'recovered': 2545, 'confirmed': 8194, 'deaths': 493}, 'Haryana': {'active': 393, 'recovered': 300, 'confirmed': 703, 'deaths': 10}, 'Himachal Pradesh': {'active': 14, 'recovered': 39, 'confirmed': 55, 'deaths': 2}, 'Jammu and Kashmir': {'active': 469, 'recovered': 383, 'confirmed': 861, 'deaths': 9}, 'Jharkhand': {'active': 76, 'recovered': 78, 'confirmed': 157, 'deaths': 3}, 'Karnataka': {'active': 393, 'recovered': 424, 'confirmed': 848, 'deaths': 31}, 'Kerala': {'active': 19, 'recovered': 489, 'confirmed': 512, 'deaths': 4}, 'Ladakh': {'active': 21, 'recovered': 21, 'confirmed': 42, 'deaths': 0}, 'Madhya Pradesh': {'active': 1723, 'recovered': 1676, 'confirmed': 3614, 'deaths': 215}, 'Maharashtra': {'active': 17140, 'recovered': 4199, 'confirmed': 22171, 'deaths': 832}, 'Manipur': {'active': 0, 'recovered': 2, 'confirmed': 2, 'deaths': 0}, 'Meghalaya': {'active': 2, 'recovered': 10, 'confirmed': 13, 'deaths': 1}, 'Mizoram': {'active': 0, 'recovered': 1, 'confirmed': 1, 'deaths': 0}, 'Odisha': {'active': 306, 'recovered': 68, 'confirmed': 377, 'deaths': 3}, 'Puducherry': {'active': 3, 'recovered': 6, 'confirmed': 9, 'deaths': 0}, 'Punjab': {'active': 1626, 'recovered': 166, 'confirmed': 1823, 'deaths': 31}, 'Rajasthan': {'active': 1531, 'recovered': 2176, 'confirmed': 3814, 'deaths': 107}, 'Tamil Nadu': {'active': 5198, 'recovered': 1959, 'confirmed': 7204, 'deaths': 47}, 'Telengana': {'active': 416, 'recovered': 750, 'confirmed': 1196, 'deaths': 30}, 'Tripura': {'active': 148, 'recovered': 2, 'confirmed': 150, 'deaths': 0}, 'Uttarakhand': {'active': 21, 'recovered': 46, 'confirmed': 68, 'deaths': 1}, 'Uttar Pradesh': {'active': 1740, 'recovered': 1653, 'confirmed': 3467, 'deaths': 74}, 'West Bengal': {'active': 1337, 'recovered': 417, 'confirmed': 1939, 'deaths': 185}} ### To get time at which data has been updated In [6]: stats['time'] Out[6]: '11 May 2020, 08:00 IST (GMT+5:30)' ### To get India's Historical data In [7]: hist = obj.gethistorical() In [8]: hist Out[8]: {'cases': {'1/22/20': 0, '1/23/20': 0, '1/24/20': 0, '1/25/20': 0, '1/26/20': 0, '1/27/20': 0, '1/28/20': 0, '1/29/20': 0, '1/30/20': 1, '1/31/20': 1, '2/1/20': 1, '2/2/20': 2, '2/3/20': 3, '2/4/20': 3, '2/5/20': 3, '2/6/20': 3, '2/7/20': 3, '2/8/20': 3, '2/9/20': 3, '2/10/20': 3, '2/11/20': 3, '2/12/20': 3, '2/13/20': 3, '2/14/20': 3, '2/15/20': 3, '2/16/20': 3, '2/17/20': 3, '2/18/20': 3, '2/19/20': 3, '2/20/20': 3, '2/21/20': 3, '2/22/20': 3, '2/23/20': 3, '2/24/20': 3, '2/25/20': 3, '2/26/20': 3, '2/27/20': 3, '2/28/20': 3, '2/29/20': 3, '3/1/20': 3, '3/2/20': 5, '3/3/20': 5, '3/4/20': 28, '3/5/20': 30, '3/6/20': 31, '3/7/20': 34, '3/8/20': 39, '3/9/20': 43, '3/10/20': 56, '3/11/20': 62, '3/12/20': 73, '3/13/20': 82, '3/14/20': 102, '3/15/20': 113, '3/16/20': 119, '3/17/20': 142, '3/18/20': 156, '3/19/20': 194, '3/20/20': 244, '3/21/20': 330, '3/22/20': 396, '3/23/20': 499, '3/24/20': 536, '3/25/20': 657, '3/26/20': 727, '3/27/20': 887, '3/28/20': 987, '3/29/20': 1024, '3/30/20': 1251, '3/31/20': 1397, '4/1/20': 1998, '4/2/20': 2543, '4/3/20': 2567, '4/4/20': 3082, '4/5/20': 3588, '4/6/20': 4778, '4/7/20': 5311, '4/8/20': 5916, '4/9/20': 6725, '4/10/20': 7598, '4/11/20': 8446, '4/12/20': 9205, '4/13/20': 10453, '4/14/20': 11487, '4/15/20': 12322, '4/16/20': 13430, '4/17/20': 14352, '4/18/20': 15722, '4/19/20': 17615, '4/20/20': 18539, '4/21/20': 20080, '4/22/20': 21370, '4/23/20': 23077, '4/24/20': 24530, '4/25/20': 26283, '4/26/20': 27890, '4/27/20': 29451, '4/28/20': 31324, '4/29/20': 33062, '4/30/20': 34863, '5/1/20': 37257, '5/2/20': 39699, '5/3/20': 42505, '5/4/20': 46437, '5/5/20': 49400, '5/6/20': 52987, '5/7/20': 56351, '5/8/20': 59695, '5/9/20': 62808, '5/10/20': 67161}, 'deaths': {'1/22/20': 0, '1/23/20': 0, '1/24/20': 0, '1/25/20': 0, '1/26/20': 0, '1/27/20': 0, '1/28/20': 0, '1/29/20': 0, '1/30/20': 0, '1/31/20': 0, '2/1/20': 0, '2/2/20': 0, '2/3/20': 0, '2/4/20': 0, '2/5/20': 0, '2/6/20': 0, '2/7/20': 0, '2/8/20': 0, '2/9/20': 0, '2/10/20': 0, '2/11/20': 0, '2/12/20': 0, '2/13/20': 0, '2/14/20': 0, '2/15/20': 0, '2/16/20': 0, '2/17/20': 0, '2/18/20': 0, '2/19/20': 0, '2/20/20': 0, '2/21/20': 0, '2/22/20': 0, '2/23/20': 0, '2/24/20': 0, '2/25/20': 0, '2/26/20': 0, '2/27/20': 0, '2/28/20': 0, '2/29/20': 0, '3/1/20': 0, '3/2/20': 0, '3/3/20': 0, '3/4/20': 0, '3/5/20': 0, '3/6/20': 0, '3/7/20': 0, '3/8/20': 0, '3/9/20': 0, '3/10/20': 0, '3/11/20': 1, '3/12/20': 1, '3/13/20': 2, '3/14/20': 2, '3/15/20': 2, '3/16/20': 2, '3/17/20': 3, '3/18/20': 3, '3/19/20': 4, '3/20/20': 5, '3/21/20': 4, '3/22/20': 7, '3/23/20': 10, '3/24/20': 10, '3/25/20': 12, '3/26/20': 20, '3/27/20': 20, '3/28/20': 24, '3/29/20': 27, '3/30/20': 32, '3/31/20': 35, '4/1/20': 58, '4/2/20': 72, '4/3/20': 72, '4/4/20': 86, '4/5/20': 99, '4/6/20': 136, '4/7/20': 150, '4/8/20': 178, '4/9/20': 226, '4/10/20': 246, '4/11/20': 288, '4/12/20': 331, '4/13/20': 358, '4/14/20': 393, '4/15/20': 405, '4/16/20': 448, '4/17/20': 486, '4/18/20': 521, '4/19/20': 559, '4/20/20': 592, '4/21/20': 645, '4/22/20': 681, '4/23/20': 721, '4/24/20': 780, '4/25/20': 825, '4/26/20': 881, '4/27/20': 939, '4/28/20': 1008, '4/29/20': 1079, '4/30/20': 1154, '5/1/20': 1223, '5/2/20': 1323, '5/3/20': 1391, '5/4/20': 1566, '5/5/20': 1693, '5/6/20': 1785, '5/7/20': 1889, '5/8/20': 1985, '5/9/20': 2101, '5/10/20': 2212}, 'recovered': {'1/22/20': 0, '1/23/20': 0, '1/24/20': 0, '1/25/20': 0, '1/26/20': 0, '1/27/20': 0, '1/28/20': 0, '1/29/20': 0, '1/30/20': 0, '1/31/20': 0, '2/1/20': 0, '2/2/20': 0, '2/3/20': 0, '2/4/20': 0, '2/5/20': 0, '2/6/20': 0, '2/7/20': 0, '2/8/20': 0, '2/9/20': 0, '2/10/20': 0, '2/11/20': 0, '2/12/20': 0, '2/13/20': 0, '2/14/20': 0, '2/15/20': 0, '2/16/20': 3, '2/17/20': 3, '2/18/20': 3, '2/19/20': 3, '2/20/20': 3, '2/21/20': 3, '2/22/20': 3, '2/23/20': 3, '2/24/20': 3, '2/25/20': 3, '2/26/20': 3, '2/27/20': 3, '2/28/20': 3, '2/29/20': 3, '3/1/20': 3, '3/2/20': 3, '3/3/20': 3, '3/4/20': 3, '3/5/20': 3, '3/6/20': 3, '3/7/20': 3, '3/8/20': 3, '3/9/20': 3, '3/10/20': 4, '3/11/20': 4, '3/12/20': 4, '3/13/20': 4, '3/14/20': 4, '3/15/20': 13, '3/16/20': 13, '3/17/20': 14, '3/18/20': 14, '3/19/20': 15, '3/20/20': 20, '3/21/20': 23, '3/22/20': 27, '3/23/20': 27, '3/24/20': 40, '3/25/20': 43, '3/26/20': 45, '3/27/20': 73, '3/28/20': 84, '3/29/20': 95, '3/30/20': 102, '3/31/20': 123, '4/1/20': 148, '4/2/20': 191, '4/3/20': 192, '4/4/20': 229, '4/5/20': 229, '4/6/20': 375, '4/7/20': 421, '4/8/20': 506, '4/9/20': 620, '4/10/20': 774, '4/20/20': 3273, '4/21/20': 3975, '4/22/20': 4370, '4/23/20': 5012, '4/24/20': 5498, '4/25/20': 5939, '4/26/20': 6523, '4/27/20': 7137, '4/28/20': 7747, '4/29/20': 8437, '4/30/20': 9068, '5/1/20': 10007, '5/2/20': 10819, '5/3/20': 11775, '5/4/20': 12847, '5/5/20': 14142, '5/6/20': 15331, '5/7/20': 16776, '5/8/20': 17887, '5/9/20': 19301, '5/10/20': 20969}}11/20': 969, '4/12/20': 1080, '4/13/20': 1181, '4/14/20': 1359, '4/15/20': 1432, '4/16/20': 1768, '4/17/20': 2041, '4/18/20': 2463, '4/19/20': 2854, '4/20/20': 3273, '4/21/20': 3975, '4/22/20': 4370, '4/23/20': 5012, '4/24/20': 5498, '4/25/20': 5939, '4/26/20': 6523, '4/27/20': 7137, '4/28/20': 7747, '4/29/20': 8437, '4/30/20': 9068, '5/1/20': 10007, '5/2/20': 10819, '5/3/20': 11775, '5/4/20': 12847, '5/5/20': 14142, '5/6/20': 15331, '5/7/20': 16776, '5/8/20': 17887, '5/9/20': 19301, '5/10/20': 20969}} # Data Source * [Ministry of Health and Family Welfar Govt of India](https://www.mohfw.gov.in/): For latest counts * [NovelCovid](https://github.com/NovelCOVID/API): For historical data


نیازمندی

مقدار نام
- requests
- beautifulsoup4


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl Covid19India-0.0.5:

    pip install Covid19India-0.0.5.whl


نصب پکیج tar.gz Covid19India-0.0.5:

    pip install Covid19India-0.0.5.tar.gz