معرفی شرکت ها


ConsistencyTEST-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Consistency test
ویژگی مقدار
سیستم عامل -
نام فایل ConsistencyTEST-0.0.1
نام ConsistencyTEST
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Fiorenzo Stoppa
ایمیل نویسنده f.stoppa@astro.ru.nl
آدرس صفحه اصلی https://github.com/FiorenST/ConTEST
آدرس اینترنتی https://pypi.org/project/ConsistencyTEST/
مجوز -
<img src=https://see.fontimg.com/api/renderfont4/KpAp/eyJyIjoiZnMiLCJoIjoxMzAsInciOjEwMDAsImZzIjoxMzAsImZnYyI6IiNGRDhDMDMiLCJiZ2MiOiIjMDYwNTA1IiwidCI6MX0/Q29uVEVTVA/kg-second-chances-sketch.png width=50% height=50%> <!-- [![DOI](https://zenodo.org/badge/440851447.svg)](https://zenodo.org/badge/latestdoi/440851447) <a href="https://ascl.net/2203.014"><img src="https://img.shields.io/badge/ascl-2203.014-blue.svg?colorB=262255" alt="ascl:2203.014" /></a> <img src="https://github.com/FiorenSt/AutoSourceID-Light/blob/main/Plots/OpticalImagePatch.png " width=50% height=50%><img src="https://github.com/FiorenSt/AutoSourceID-Light/blob/main/Plots/LoGOnOptical.png " width=50% height=50%> --> # Description ConTEST is a statistical test for assessing the consistency between observations and astrophysical models. It uses a combination of non-parametric methods and distance measures to obtain a test statistic that evaluates the closeness of the astrophysical model to the observations; hypothesis testing is then performed using bootstrap. <img src=https://github.com/FiorenSt/ConTEST/blob/main/img/logo_contest_bkg.png width=15% height=15%> ## Table of Contents - [Step-by-step setup](#step-by-step-setup) - [Tutorial](#tutorial) # Step-by-step setup _Follow the instructions below to install and start using ConTEST in Python._ 1. Install ConTEST: ```sh pip intall ConTEST ``` or git clone the repository: ```sh git clone https://github.com/FiorenSt/ConTEST.git ``` <br/> 2. Install the statistical software [R](https://www.r-project.org/). R is needed to run some internal functions of ConTEST. <br/> 3. To ensure that Python can access R's libraries, run the three lines below in Python (of course, modify to match your folders): ```sh import os os.environ['R_HOME'] = '~/Program Files/R/R-4.0.2' #-> Your installed R folder os.environ['R_USER'] = '~/Miniconda3/envs/ConsistencyTest/lib/site-packages/' #-> Your python environment os.environ['R_LIBS_USER'] = "~/Program Files/R/R-4.0.2/library/" #-> Your R packages library ``` <br/> 4. Install Python dependencies (rpy2 needs R already installed): ```sh pip intall matplotlib pip intall numpy pip intall pandas pip intall scipy pip intall seaborn pip intall rpy2 ``` <br/> 5. If this is the first time you use ConTEST, you need to install the R package used in Smoothed ConTEST. In Python, simply run: ```sh def install_R_functions(packnames=('np')): # import R's utility package utils = rpackages.importr('utils') # select a mirror for R packages utils.chooseCRANmirror(ind=1) # select the first mirror in the list # R package install utils.install_packages(packnames) install_R_functions() ``` 3. Use ConTEST in Python! Follow the tutorial below for more information about the individual functions. <br/> <img src="https://github.com/FiorenSt/ConTEST/blob/main/img/MemeConTEST.png " width=80% height=80%> <br/> # Dependencies: The following combination of package versions works on most Linux and Windows computers, however other package versions may also work. If a problem with the combination of packages occurs, raise an issue, and we will help you solve it. ### Python 3 (or superior) * Numpy 1.21.6 * Pandas 1.4.2 * Scipy 1.7.1 * Matplotlib 3.3.4 * Seaborn 0.11.2 * Rpy2 3.5.2 (For R and Python interaction) ### R 3.6.0 (or superior) * Np 0.60 # Tutorial ConTEST can be applied in different case scenarios depending on the nature of the model being tested. <br/> For more details check out the paper: _Stoppa et al., in preparation_ There are 4 fundamental functions in ConTEST: - ConTEST for regression: Test the consistency of a model with respect to an observed dataset and their uncertainties - Smoothed ConTEST for regression: Test the consistency of a model with respect to an observed dataset and their uncertainties - ConTEST for outliers: Test if an observed sample is likely to come from a density model (or a simulated dataset) - ConTEST for densities: Test the consistency of a density model (or a simulated dataset) with respect to an observed dataset ### Intro script ```sh # ensure that Python can access R import os os.environ['R_HOME'] = '~/Program Files/R/R-4.0.2' #-> Your installed R folder os.environ['R_USER'] = '~/Miniconda3/envs/ConsistencyTest/lib/site-packages/' #-> Your python environment os.environ['R_LIBS_USER'] = "~/Program Files/R/R-4.0.2/library/" #-> Your R packages library # load contest functions from ConTEST.CONTEST import contest_reg, smoothed_contest_reg, contest_outliers, contest_dens ``` ## Regression models Create synthetic model, observations, and uncertainties to test the functions: ```sh # random sample n=100 x = np.random.rand(n) # synthetic model beta1 = -0.3 beta2 = 8 m = 2 model = np.exp(beta1*x)*np.sin(beta2*x) + m # error function (Not known in real scenarios) err_model = model * .05 # sample observations from the model with the correct uncertainties obs = np.zeros(N) for i in range(N): obs[i] = model[i] + stats.multivariate_normal.rvs(mean=0, cov=(err_model[i])**2,size=1) # assign correct uncertainties to the observations err_obs = err_model ``` ### ConTEST for regression ```sh Test1 = contest_reg(y_obs = obs, x_obs = x, y_mod = model, y_obs_err = err_obs, K=1000,plot=True) ``` <img src="https://github.com/FiorenSt/ConTEST/blob/main/img/ConTESTforRegression.png " width=80% height=80%> ### Smoothed ConTEST for regression ```sh Test2 = smoothed_contest_reg(y_obs = obs, x_obs = x, y_mod = model, y_obs_err = err_obs, K=1000,plot=True) ``` <img src="https://github.com/FiorenSt/ConTEST/blob/main/img/SmoothedConTESTforRegression.png " width=80% height=80%> ## Density models Create synthetic model and observations: ```sh n=100 #1D example obs = stats.multivariate_normal.rvs(mean=5, cov= [1.5],size=n) model = stats.multivariate_normal.rvs(mean=5, cov= [1.5],size=1000) #2D example obs_2d = stats.multivariate_normal.rvs(mean=[5,5], cov= [[1.5,.8],[.8,2.5]],size=n) model_2d = stats.multivariate_normal.rvs(mean=[5,5], cov= [[1.5,.8],[.8,2.5]],size=1000) ### ConTEST for outliers ```sh Test3 = contest_outliers(mod=model, obs=obs, K=10000, plot=True) Test3 = contest_outliers(mod=model_2d, obs=obs_2d, K=10000, plot=True) ``` <img src="https://github.com/FiorenSt/ConTEST/blob/main/img/ConTESTforOutliers1D.png " width=80% height=80%> <img src="https://github.com/FiorenSt/ConTEST/blob/main/img/ConTESTforOutliers2D.png " width=80% height=80%> ### ConTEST for densities ```sh Test4 = contest_dens(mod=model, obs=obs, K=10000, plot=True) Test4 = contest_dens(mod=model_2d, obs=obs_2d, K=10000, plot=True) ``` <img src="https://github.com/FiorenSt/ConTEST/blob/main/img/ConTESTforDensities1D.png " width=80% height=80%> <img src="https://github.com/FiorenSt/ConTEST/blob/main/img/ConTESTforDensities2D.png " width=80% height=80%>


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl ConsistencyTEST-0.0.1:

    pip install ConsistencyTEST-0.0.1.whl


نصب پکیج tar.gz ConsistencyTEST-0.0.1:

    pip install ConsistencyTEST-0.0.1.tar.gz