معرفی شرکت ها


Concurrent_AP-1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Scalable and parallel programming implementation of Affinity Propagation clustering
ویژگی مقدار
سیستم عامل -
نام فایل Concurrent_AP-1.4
نام Concurrent_AP
نسخه کتابخانه 1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Gregory Giecold
ایمیل نویسنده ggiecold@jimmy.harvard.edu
آدرس صفحه اصلی https://github.com/GGiecold/Concurrent_AP
آدرس اینترنتی https://pypi.org/project/Concurrent_AP/
مجوز MIT License
Concurrent\_AP ============== Overview -------- A scalable and concurrent programming implementation of Affinity Propagation clustering. Affinity Propagation is a clustering algorithm based on passing messages between data-points. Storing and updating matrices of 'affinities', 'responsibilities' and 'similarities' between samples can be memory-intensive. We address this issue through the use of an HDF5 data structure, allowing Affinity Propagation clustering of arbitrary large data-sets, where other Python implementations would return a MemoryError on most machines. We also significantly speed up the computations by splitting them up across subprocesses, thereby taking full advantage of the resources of multi-core processors and bypassing the Global Interpreter Lock of the standard Python interpreter, CPython. Installation and Requirements ----------------------------- Concurrent\_AP requires Python 2.7 along with the following packages and a few modules from the Standard Python Library: - NumPy >= 1.9 - psutil - PyTables - scikit-learn - setuptools It is suggested that you check that the required dependencies are installed, although the ``pip`` command below should do this automatically for you. You can indeed most conveniently download Concurrent_AP from the official Python Package Index (PyPI) as follows: - open a terminal window; - type in the command ``pip install Concurrent_AP``. The code herewith has been tested on Fedora, OS X and Ubuntu and should work fine on any other member of the Unix-like family of operating systems. Usage and Command Line Options ------------------------------ See the docstrings associated to each function of the Concurrent\_AP module for more information and an understanding of how different tasks are organized and shared among subprocesses. Usage: ``Concurrent_AP [options] file_name``, where ``file_name`` denotes the path where the data to be processed by Affinity Propagation clustering is held. The data must consist in tab-separated rows of samples, each column corresponding to a particular feature. - ``-c`` or ``--convergence``: specify the number of iterations without change in the number of clusters that signals convergence (defaults to 15); - ``-d`` or ``--damping``: the damping parameter of Affinity Propagation (defaults to 0.5); - ``-f`` or ``--file``: option to specify the file name or file handle of the hierarchical data format where the matrices involved in Affinity Propagation clustering will be stored (defaults to a temporary file); - ``-i`` or ``--iterations``: maximum number of message-passing iterations (defaults to 200); - ``-m`` or ``--multiprocessing``: the number of processes to use; - ``-p`` or ``--preference``: the preference parameter of Affinity Propagation (if not specified, will be determined as the median of the distribution of pairwise L2 Euclidean distances between samples); - ``-s`` or ``--similarities``: determine if a similarity matrix has been pre-computed and stored in the HDF5 data structure accessible at the location specified through the command line option ``-f`` or ``--file`` (see above); - ``-v`` or ``--verbose``: whether to be verbose. Demo of Concurrent\_AP ---------------------- The following few lines illustrate the use of Concurrent\_AP on the 'Iris data-set' from the UCI Machine Learning Repository. While the number of samples is here way too small for the benefits of the present multi-tasking implementation and the use of an HDF5 data structure to come fully into play, this data-set has the advantage of being well-known and prone to a quick comparison with scikit-learn's version of Affinity Propagation clustering. - In a Python interpreter console, enter the following few lines, whose purpose is to create a file containing the Iris data-set that will be later subjected to Affinity Propagation clustering via Concurrent\_AP: :: >>> import numpy as np >>> from sklearn import datasets >>> iris = datasets.load_iris() >>> data = iris.data >>> with open('./iris_data.txt', 'w') as f: np.savetxt(f, data, fmt = '%.4f', delimiter = '\t') - Open a terminal window. - Type in ``Concurrent_AP --preference 5.47 --v iris_data.txt`` or simply ``Concurrent_AP iris_data.txt``. The latter will automatically compute a preference parameter from the data-set. When the rounds of message-passing among data-points have completed, a folder containing a file of cluster labels and a file of cluster centers indices both in tab-separated format is created in your current working directory. Reference --------- Brendan J. Frey and Delbert Dueck. "Clustering by Passing Messages between Data Points", Science Feb. 2007


نحوه نصب


نصب پکیج whl Concurrent_AP-1.4:

    pip install Concurrent_AP-1.4.whl


نصب پکیج tar.gz Concurrent_AP-1.4:

    pip install Concurrent_AP-1.4.tar.gz