معرفی شرکت ها


ConcreteDropout-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Concrete Dropout implementation for Tensorflow 2 and PyTorch
ویژگی مقدار
سیستم عامل -
نام فایل ConcreteDropout-0.2.1
نام ConcreteDropout
نسخه کتابخانه 0.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Aurelio Amerio <aurelio.amerio@ific.uv.es>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/ConcreteDropout/
مجوز MIT License Copyright (c) 2022 Aurelio Amerio Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# ConcreteDropout [![Downloads](https://pepy.tech/badge/concretedropout)](https://pepy.tech/project/concretedropout) [![](https://img.shields.io/pypi/v/concretedropout.svg?maxAge=3600)](https://pypi.org/project/concretedropout/) Concrete Dropout updated implementation for Tensorflow 2.0 and PyTorch, following the [original code](https://github.com/yaringal/ConcreteDropout) from the paper. # Installation To install this package, please use: ```bash pip install concretedropout ``` # Introduction Concrete dropout allows for the dropout probability of a layer to become a trainable parameter. For more information, see the original paper: [https://arxiv.org/abs/1705.07832](https://arxiv.org/abs/1705.07832) This package implements Concrete Dropout for the following layers: Tensorflow: - Dense - `tensorflow.ConcreteDenseDropout` - Conv1D - `tensorflow.ConcreteSpatialDropout1D` - Conv2D - `tensorflow.ConcreteSpatialDropout2D` - Conv3D - `tensorflow.ConcreteSpatialDropout3D` - DepthwiseConv1D - `tensorflow.ConcreteSpatialDropoutDepthwise1D` - DepthwiseConv2D - `tensorflow.ConcreteSpatialDropoutDepthwise2D` PyTorch: - Linear - `pytorch.ConcreteLinearDropout` - Conv1d - `pytorch.ConcreteDropout1d` - Conv2d - `pytorch.ConcreteDropout2d` - Conv3d - `pytorch.ConcreteDropout3d` Please notice that the dropout layer will be applied **before** the chosen layer. # Arguments Each concrete dropout layer supports the following arguments: - `layer`: an instance of the layer to which concrete dropout will be applied. Only required for Tensorflow. - `weight_regularizer=1e-6`: A positive number which satisfies weight_regularizer = $l^2 / (\tau * N)$ with prior lengthscale l, model precision τ (inverse observation noise), and N the number of instances in the dataset. Note that kernel_regularizer is not needed. The appropriate weight_regularizer value can be computed with the utility function `get_weight_regularizer(N, l, tau)` - `dropout_regularizer=1e-5`: A positive number which satisfies dropout_regularizer = $2 / (\tau * N)$ with model precision τ (inverse observation noise) and N the number of instances in the dataset. Note the relation between dropout_regularizer and weight_regularizer: weight_regularizer / dropout_regularizer = $l^2 / 2$ with prior lengthscale l. Note also that the factor of two should be ignored for cross-entropy loss, and used only for the eculedian loss. The appropriate dropout_regularizer value can be computed with the utility function `get_dropout_regularizer(N, tau, cross_entropy_loss=False)`. By default, a regression problem will be assumed. - `init_min=0.1`: minimum value for the random initial dropout probability - `init_max=0.1`: maximum value for the random initial dropout probability - `is_mc_dropout=False`: enables Monte Carlo Dropout (i.e. dropout will remain active also at prediction time). Default: False. - `data_format=None`: channels_last or channels_first (only for Tensorflow). Defaults to channels_last for Tensorflow. PyTorch defaults to channel_first. - `temperature`: temperature of the concrete distribution. For more information see [arXiv:1611.00712](https://arxiv.org/abs/1611.00712). Defaults to `0.1` for dense layers, and `2/3` for convolution layers. # Example The suggested way to employ concrete dropout layers is the following. Tensorflow: ```python import tensorflow as tf from concretedropout.tensorflow import ConcreteDenseDropout #... import the dataset Ns = x_train.shape[0] # get the regularizers wr = get_weight_regularizer(Ns, l=1e-2, tau=1.0) # tau is the inverse dr = get_dropout_regularizer(Ns, tau=1.0, cross_entropy_loss=True) # ... a neural network with output x dense1 = tf.keras.layers.Dense(N_neurons) x = ConcreteDenseDropout(dense1, weight_regularizer=wr, dropout_regularizer=dr)(x) ``` PyTorch: ```python import torch from concretedropout.pytorch import ConcreteLinearDropout #... import the dataset Ns = x_train.shape[0] # get the regularizers wr = get_weight_regularizer(Ns, l=1e-2, tau=1.0) # tau is the inverse dr = get_dropout_regularizer(Ns, tau=1.0, cross_entropy_loss=True) # ... a neural network with output x linear = torch.nn.Linear(n_input, N_neurons) x = ConcreteLinearDropout(weight_regularizer=wr, dropout_regularizer=dr)(x, linear) # inside the train step of your model, you need to add a new regularization term, which is due to the concrete dropout: def training_step(self, batch, batch_nb): x, y = batch output = self(x) reg = torch.zeros(1) # get the regularization term for module in filter(lambda x: isinstance(x, ConcreteDropout), self.modules()): reg += module.regularization loss = self.loss(output, y) + reg # add the reg term return loss ``` For a practical example on how to use concrete dropout for the mnist dataset, see this [Tensorflow example](https://github.com/aurelio-amerio/ConcreteDropout-TF2/blob/main/examples/Tensorflowmnist_convnet_concrete_dropout.ipynb) and this [PyTorch example](https://github.com/aurelio-amerio/ConcreteDropout-TF2/blob/main/examples/PyTorch/MNIST_pytorch.ipynb). # Bayesian neural network with MCDropout You can find [here](https://github.com/aurelio-amerio/ConcreteDropout-TF2/blob/main/examples/regression_MCDropout.ipynb) an example on how to use MCDropout and Concrete Dropout to implement a Bayesian Neural Network with MCDropout on Tensorflow. For more information, see [arXiv:1506.02142](https://arxiv.org/abs/1506.02142). # Known issues Due to the way the additional dropout loss term is added to the main loss term, during training and evaluation the **model loss** might become a **negative number**. This has no impact on the actual optimisation of the model. If you desire to track your loss function separately, as a work around it is advised to add it to the list of metrics.


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl ConcreteDropout-0.2.1:

    pip install ConcreteDropout-0.2.1.whl


نصب پکیج tar.gz ConcreteDropout-0.2.1:

    pip install ConcreteDropout-0.2.1.tar.gz