معرفی شرکت ها


Ceygen-0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cython helper for linear algebra with typed memoryviews built atop the Eigen C++ library
ویژگی مقدار
سیستم عامل -
نام فایل Ceygen-0.3
نام Ceygen
نسخه کتابخانه 0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Matěj Laitl
ایمیل نویسنده matej@laitl.cz
آدرس صفحه اصلی https://github.com/strohel/Ceygen
آدرس اینترنتی https://pypi.org/project/Ceygen/
مجوز GNU GPL v2+
====== Ceygen ====== About ===== Ceygen is a binary Python extension module for linear algebra with Cython_ `typed memoryviews`_. Ceygen is built atop the `Eigen C++ library`_. Ceygen is **not** a Cython wrapper or an interface to Eigen! The name Ceygen is a rather poor wordplay on Cython + Eigen; it has nothing to do with software piracy. Ceygen is currently distributed under GNU GPL v2+ license. The authors of Ceygen are however open to other licensing suggestions. (Do you want to use Ceygen in e.g. a BSD-licensed project? Ask!) Cython is being developed by Matěj Laitl with support from the `Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic`_. Feel free to send me a mail to matej at laitl dot cz. .. _Cython: http://cython.org/ .. _`typed memoryviews`: http://docs.cython.org/src/userguide/memoryviews.html .. _`Eigen C++ library`: http://eigen.tuxfamily.org/ .. _`Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic`: http://www.utia.cas.cz/ Features ======== Ceygen... * **is fast** - Ceygen's primary raison d'être is to provide overhead-free algebraic operations for Cython projects that work with `typed memoryviews`_ (especially small-sized). For every function there is a code-path where no Python function is called, no memory is allocated on heap and no data is copied. `Eigen itself performs rather well`_, too. * **is documented** - see `Documentation`_ or hop directly to `on-line docs`_. * **supports various data types** - Ceygen uses Cython `fused types`_ (a.k.a. wannabe templates) along with Eigen's template nature to support various data types without duplicating code. While just a few types are pre-defined (float, double, ...), adding a new type is a matter of adding 3 lines and rebuilding Ceygen. * **is extensively tested** - Ceygen's test suite validates every its public method, including errors raised on invalid input. Thanks to Travis CI, `every push is automatically tested`_ against **Python 2.6**, **2.7**, **3.2** and **3.3**. * **is multithreading-friendly** - Every Ceygen function doesn't acquire the GIL_ unless it needs to create a Python object (always avoidable); all functions are declared nogil_ so that you can call them in prange_ blocks without losing parallelism. * **provides descriptive error messages** - Care is taken to propagate all errors properly (down from Eigen) so that you are not stuck debugging your program. Ceygen functions don't crash on invalid input but rather raise reasonable errors. * works well with NumPy_, but doesn't depend on it. You don't need NumPy to build or run Ceygen, but thanks to Cython, `Cython memoryviews and NumPy arrays`_ are fully interchangeable without copying the data (where it is possible). The test suite currently makes use of NumPy because of our laziness. :-) .. _`Eigen itself performs rather well`: http://eigen.tuxfamily.org/index.php?title=Benchmark .. _`on-line docs`: http://strohel.github.com/Ceygen-doc/ .. _`fused types`: http://docs.cython.org/src/userguide/fusedtypes.html .. _`every push is automatically tested`: https://travis-ci.org/strohel/Ceygen .. _GIL: http://docs.python.org/glossary.html#term-global-interpreter-lock .. _nogil: http://docs.cython.org/src/userguide/external_C_code.html#declaring-a-function-as-callable-without-the-gil .. _prange: http://docs.cython.org/src/userguide/parallelism.html .. _NumPy: http://www.numpy.org/ .. _`Cython memoryviews and NumPy arrays`: http://docs.cython.org/src/userguide/memoryviews.html#coercion-to-numpy On the other hand, Ceygen... * **depends on Eigen build-time**. Ceygen expects *Eigen 3* headers to be installed under ``/usr/lib/eigen3`` when it is being built. Installing Eigen is a matter of unpacking it, because it is a pure template library defined solely in the headers. Ceygen doesn't reference Eigen at all at runtime because all code is complited in. * **still provides a very little subset of Eigen functionality**. We add new functions only as we need them in another projects, but we believe that the hard part is the infrastructure - implementing a new function should be rather straightforward (with decent Cython and C++ knowledge). We're very open to pull requests! (do include unit tests in them) * **needs recent Cython** (currently at least 0.19.1) to compile. If this is a problem, you can distribute .cpp files or final Python extension module instead. * **doesn't bring Eigen's elegance to Cython** - if you think of lazy evaluation and advanced expessions, stop dreaming. Ceygen will make your code faster, not nicer. `Array expessions`_ will help here. .. _`Array expessions`: https://github.com/cython/cython/pull/144 A simple example to compute matrix product within a big matrix may look like >>> cdef double[:, :] big = np.array([[1., 2., 2., 0., 0., 0.], >>> [3., 4., 0., -2., 0., 0.]]) >>> ceygen.core.dot_mm(big[:, 0:2], big[:, 2:4], big[:, 4:6]) [[ 2. -4.] [ 6. -8.]] >>> big [[ 1. 2. 2. 0. 2. -4.] [ 3. 4. 0. -2. 6. -8.]], where the `dot_mm`_ call above doesn't copy any data, allocates no memory on heap, doesn't need the GIL_ and uses vectorization (SSE, AltiVec...) to get the best out of your processor. .. _`dot_mm`: http://strohel.github.com/Ceygen-doc/core.html#ceygen.core.dot_mm Obtaining ========= Ceygen development happens in `its github repository`_, ``git clone git@github.com:strohel/Ceygen.git`` -ing is the preferred way to get it as you'll have the latest & greatest version (which shouldn't break thanks to continuous integration). Released versions are available from `Ceygen's PyPI page`_. .. _`its github repository`: https://github.com/strohel/Ceygen .. _`Ceygen's PyPI page`: http://pypi.python.org/pypi/Ceygen Building ======== Ceygen uses standard Distutils to build, test and install itself, simply run: * ``python setup.py build`` to build Ceygen * ``python setup.py test`` to test it (inside build directory) * ``python setup.py install`` to install it * ``python setup.py clean`` to clean generated object, .cpp and .html files (perhaps to force recompilation) Commands can be combined, automatically call dependent commands and can take options, the recommended combo to safely install Ceygen is therefore ``python setup.py -v test install``. Building Options ---------------- You can set various build options as it is usual with distutils, see ``python setup.py --help``. Notable is the `build_ext` command and its `--include-dirs` (standard) and following additional options (whose are Ceygen extensions): --include-dirs defaults to `/usr/include/eigen3` and must be specified if you've installed Eigen 3 to a non-standard directory, --cflags defaults to `-O2 -march=native -fopenmp`. Please note that it is important to enable optimizations and generation of appropriate MMX/SSE/altivec-enabled code as the actual computation code from Eigen is built along with the boilerplate Ceygen code, --ldflags additional flags to pass to linker, defaults to `-fopenmp`. Use standard `--libraries` for specifying extra libraries to link against, --annotate pass `--annotate` to Cython to produce annotated HTML files during compiling. Only useful during Ceygen development. You may want to remove `-fopenmp` from `cflags` and `ldflags` if you are already parallelising above Ceygen. The resulting command could look like ``python setup.py -v build_ext --include-dirs=/usr/local/include/eigen3 --cflags="-O3 -march=core2" --ldflags= test``. The same could be achieved by putting the options to a `setup.cfg` file:: [build_ext] include_dirs = /usr/local/include/eigen3 cflags = -O3 -march=core2 ldflags = Documentation ============= Ceygen documentation is maintained in reStructuredText_ format under ``doc/`` directory and can be exported into a variety of formats using Sphinx_ (version at least 1.0 needed). Just type ``make`` in that directory to see a list of supported formats and for example ``make html`` to build HTML pages with the documentation. See ``ChangeLog.rst`` file for changes between versions or `view it online`_. **On-line documentation** is available at http://strohel.github.com/Ceygen-doc/ .. _reStructuredText: http://sphinx-doc.org/rest.html .. _Sphinx: http://sphinx-doc.org/ .. _`view it online`: http://strohel.github.com/Ceygen-doc/ChangeLog.html Bugs ==== Please report any bugs you find and suggestions you may have to `Ceygen's github Issue Tracker`_. .. _`Ceygen's github Issue Tracker`: https://github.com/strohel/Ceygen/issues


نحوه نصب


نصب پکیج whl Ceygen-0.3:

    pip install Ceygen-0.3.whl


نصب پکیج tar.gz Ceygen-0.3:

    pip install Ceygen-0.3.tar.gz