معرفی شرکت ها


Cell-BLAST-0.3.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Single-cell transcriptome querying tool
ویژگی مقدار
سیستم عامل OS Independent
نام فایل Cell-BLAST-0.3.8
نام Cell-BLAST
نسخه کتابخانه 0.3.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zhijie Cao
ایمیل نویسنده caozj@mail.cbi.pku.edu.cn
آدرس صفحه اصلی https://github.com/gao-lab/Cell_BLAST
آدرس اینترنتی https://pypi.org/project/Cell-BLAST/
مجوز -
# Cell BLAST Cell BLAST is a cell querying tool for single-cell transcriptomics data. For each query cell, it searches for most similar cells in the reference database. Annotations in reference cells, e.g. cell type, can then be transfered to query cells based on cell-to-cell similarities. See our [publication](https://www.nature.com/articles/s41467-020-17281-7) for details. ![flowchart](docs/_static/flowchart.svg) ## Installing the Python package We only support installation via pip right now. Installation within virtual environments are recommended, see [virtualenv](https://virtualenv.pypa.io/en/latest/) or [conda](https://conda.io/docs/user-guide/tasks/manage-environments.html). For conda, here's a one-liner to set up an empty environment for installing Cell BLAST: `conda create -n cb python=3.6 && conda activate cb` Now follow the instructions below to install Cell BLAST: 1. Make sure you have a working version of tensorflow or tensorflow-gpu (version >= 1.5). You can follow the [official instructions](https://www.tensorflow.org/install/) about how to install tensorflow (and dependencies like CUDA and CuDNN for the GPU version), or just install via anaconda, which handles dependencies automatically: For installing the GPU supported version: `conda install tensorflow-gpu=1.8` For installing the CPU only version: `conda install tensorflow=1.8` 2. Install Cell BLAST by running: `pip install Cell-BLAST` 3. Check if the package can be imported in Python interpreter: `import Cell_BLAST as cb` ## Documentation Online documentation can be found [here](http://cblast.gao-lab.org/doc-latest/index.html). ## Web-based interface We also provide a [Web-based service](http://cblast.gao-lab.org/) for off-the-shelf querying of our ACA reference panels. ## Repository structure * The `Cell_BLAST` directory contains the Cell BLAST Python package. * The `Datasets` directory contains data metatables and scripts for data collection. * The `Evaluation` directory contains scripts used for benchmarking and producing some figures of the manuscript. * The `Notebooks` directory contains scripts used for additional experiments, case studies, and a pipeline for building the ACA database. * The `docs` directory contains files used to generate the online documentation. * The `test` directory contains unit tests for the Python package. ## Reproduce results ### Obtain required data For convenience, all required datasets have been packed into two data pack files. First download these files to the `Datasets` directory: * [`ftp://ftp.cbi.pku.edu.cn/pub/cell-blast-download/data_pack.tar.gz`](ftp://ftp.cbi.pku.edu.cn/pub/cell-blast-download/data_pack.tar.gz): Contains datasets required for most benchmarks and case studies, except for those used in the query speed benchmark (because these datasets are especially large, and were packed independently). * [`ftp://ftp.cbi.pku.edu.cn/pub/cell-blast-download/data_pack_ext.tar.gz`](ftp://ftp.cbi.pku.edu.cn/pub/cell-blast-download/data_pack_ext.tar.gz): Contains datasets required for the query speed benchmark. Then extract the files under the `Datasets` directory: ```bash # Under the `Datasets` directory tar xf "data_pack.tar.gz" tar xf "data_pack_ext.tar.gz" ``` ### Environment setup #### Python First create a conda environment and install most packages via: ```bash conda env create -n cb-gpu -f env.yml && conda activate cb-gpu ``` Optionally, if GPU does not work properly (possibly due to inconsistent conda channels used), reinstalling tensorflow should solve the problem: ```bash conda install tensorflow=1.8.0 tensorflow-base=1.8.0 tensorflow-gpu=1.8.0 --force-reinstall ``` Finally, install customized packages or packages unavailable in conda. All dependencies have already been installed via `env.yml`, so `--no-deps` is added to prevent overwriting conda installed packages: ```bash # Under project root pip install Cell-BLAST==0.3.7 --no-deps pip install local/scScope-0.1.5.tar.gz --no-deps # Add random seed setting pip install local/DCA-0.2.2.tar.gz --no-deps # Allow GPU memory growth, suppress integer warning pip install local/DCA_modpp-0.2.2.tar.gz --no-deps # Modify preprocessing pip install local/ZIFA-0.1.tar.gz --no-deps # Remove fixed random seeds pip install local/Dhaka-0.1.tar.gz --no-deps pip install local/scvi-0.2.3.tar.gz --no-deps # Fix torch bugs tar xf local/SAUCIE.tar.gz -C ${CONDA_PREFIX}/lib/python3.6/site-packages/ # Add random seed setting pip install fcswrite # Dependency of SAUCIE not available in conda ``` For scPhere, we use a separate environment because of conflicting dependencies (the environment should be named "scphere" for it to be found in the benchmarking pipeline): ```bash # Under project root conda create -n scphere 'python>=3.6' 'numpy>=1.16.4' 'scipy>=1.3.0' \ 'pandas>=0.21.0' 'matplotlib>=3.1.0' 'tensorflow=1.14.0' \ 'tensorflow-probability=0.7.0' 'ipykernel' && conda activate scphere pip install local/scPhere-0.1.0.tar.gz --no-deps pip install Cell-BLAST==0.3.7 # Still need cb.data to read data (tf dependent functions may not work properly) ``` #### R Start R (tested on version `3.6.0`) at project root and run: ```R # Under project root packrat::restore() ``` Then install the customized version of Seurat by: ```R # Under project root install.packages("local/seurat-2.3.3.tar.gz", repos=NULL, type="source") # Remove fixed random seeds ``` For CCA anchor (Seurat v3) and Harmony, we used a separate packrat environment. To build this dedicated environment, start R at directory "packrat/envs/seurat_v3" and run: ```R # Under the `packrat/envs/seurat_v3` directory packrat::restore() ``` Then install the customized version of Seurat v3 by: ```R # Under the `packrat/envs/seurat_v3` directory install.packages("../../../local/seurat-3.0.2.tar.gz", repos=NULL, type="source") # Remove fixed random seeds ``` ### Run all benchmarks and reproduce figures Make sure the conda environment create above is activated. Go to directory "Evaluation" and run the following command: ```bash # Under project root snakemake -prk ``` Some jobs will likely fail, e.g. due to timeout or memory issues, and cause downstream steps, including result plotting, to fail as well. These failing jobs will be blacklisted in future runs, so just run the above command for a second time, and results for the successful jobs should be summarized and plotted without error. ## Contact Feel free to submit an issue or contact us at [cblast@mail.cbi.pku.edu.cn](mailto:cblast@mail.cbi.pku.edu.cn) for problems about the Python package, website or database.


نیازمندی

مقدار نام
- numpy
>=0.39.0 numba
>=1.0.0 scipy
>=0.12.0 joblib
>=0.17.0 scikit-learn
>=4.12.0 tqdm
>=0.21.0 pandas
>=2.7.0 h5py
>=0.7.1 python-igraph
>=0.10.2 pronto
>=0.9.0 seaborn
>=0.2.1 umap-learn
>=0.6.14 anndata
>=2.0.6 loompy
>=0.8.0 statsmodels
- plotly


نحوه نصب


نصب پکیج whl Cell-BLAST-0.3.8:

    pip install Cell-BLAST-0.3.8.whl


نصب پکیج tar.gz Cell-BLAST-0.3.8:

    pip install Cell-BLAST-0.3.8.tar.gz