معرفی شرکت ها


Cad-usd-forecast-model-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Model for forecasting CAD-USD exchange price.
ویژگی مقدار
سیستم عامل -
نام فایل Cad-usd-forecast-model-0.0.1
نام Cad-usd-forecast-model
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Olaitan Lawal
ایمیل نویسنده Olaitanlawal94@gmail.com
آدرس صفحه اصلی https://github.com/Olaitan94/CADUSD-Price-Forecast/CADUSD-Price-Forecast-Model-Package
آدرس اینترنتی https://pypi.org/project/Cad-usd-forecast-model/
مجوز BSD-3
This package contains the pipeline of the ML model - forecast_model, the requirements, tests as well as other set up files. You can install this package and use the forecast_model to predict the future price of CAD-USD exchange. Find below the description of the different components & their respective uses: A. forecast_model: This is the main module of this package. It contains a number of sub modules and files. 1. config: Contains 'core.py' which is used to set the configuration for all the variables & file paths needed to run the package. The variables are listed in the config.yml file 2. datasets: This contains the original dataset used to train the model 3. processing: This contains other modules such as: - data_manager: contains functions which can be used to load a dataset from the datasets module, and save, load or remove a trained model. - preprocessing: contains functions necessary to transform raw data into the format expected by the trained model. Hence, this module is the preprocessing pipeline for this model. 4. trained_models: This module contains the latest version of the trained forecast_model 5. connfig.yml: Contains names of all the variables & file paths used in the model 6. forecast.py: for forecasting CADUSD Price 7. train_pipeline.py: for training the forecast_model 8. VERSION: for setting the version of the model B. Requirements: contains dependencies required to use or test the package C. tests: contains scripts for testing the package 1. conftest.py - contains a fixture fxn which is used to provide forecast period to the other test. 2. test_prediction.py - used to test the predition fucntion of forecast_model D. Manifest.in: contains instructions for what to include or exclude when building the package E. pyproject.toml: this file contains basic dependencies for setting up the package and also the configuration options for pytest. F. tox.ini: this file contains the settings for using tox for automated test but I didnt use tox to test this package. Testing: - Because my model using Prophet and prophet can not be installed without g++ compiler, I could not test this package with tox and so I used pytest on the cmd How to use this package: **To run the different files and test the modules, I created a conda environment for this project, installed all the dependencies in the requirements.txt except prophet. and then followed the steps in this link to install prophet. https://stackoverflow.com/questions/53178281/installing-fbprophet-python-on-windows-10 ** If testing or using the package file on your computer, you have to add the directory to your PYTHONPATH, So that python can find it. Search for 'andrei' on https://stackoverflow.com/questions/3402168/permanently-add-a-directory-to-pythonpath . If you don't do this, python will not be able to find the package and so will not be able to run the import statements


نیازمندی

مقدار نام
==1.2.0 joblib
==1.23.5 numpy
==1.5.2 pandas
==0.29.32 cython
==1.10.2 pydantic
==7.2.0 pytest
==65.5.0 setuptools
==1.6.2 strictyaml


زبان مورد نیاز

مقدار نام
>=3.7.0 Python


نحوه نصب


نصب پکیج whl Cad-usd-forecast-model-0.0.1:

    pip install Cad-usd-forecast-model-0.0.1.whl


نصب پکیج tar.gz Cad-usd-forecast-model-0.0.1:

    pip install Cad-usd-forecast-model-0.0.1.tar.gz