معرفی شرکت ها


CGvsPhoto-0.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A deep-learning method for distinguishing computer graphics from real photogrphic images
ویژگی مقدار
سیستم عامل -
نام فایل CGvsPhoto-0.0.3
نام CGvsPhoto
نسخه کتابخانه 0.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nicolas Rahmouni
ایمیل نویسنده nicolas.rahmouni@polytechnique.edu
آدرس صفحه اصلی https://github.com/NicoRahm/CGvsPhoto
آدرس اینترنتی https://pypi.org/project/CGvsPhoto/
مجوز MIT
Computer Graphics vs Real Photographic Images : A Deep-learning approach ======================================================================== .. image:: https://badge.fury.io/py/CGvsPhoto.svg :target: https://badge.fury.io/py/CGvsPhoto **CGvsPhoto** implements a method for computer graphics detection using Convolutional Neural Networks with TensorFlow back-end. The package contains methods for extracting patches from computer graphics and real images, training a CNN with a custom statistical layer, testing this model, comparing with a `state of the art method`_, visualizing probability maps, etc. .. figure:: https://user-images.githubusercontent.com/17125992/26917538-9d918318-4c69-11e7-8c6f-f865b3c5f063.png :alt: splicing Getting Started --------------- These instructions will get you a copy of the project up and running on your local machine for testing purposes. Prerequisites ~~~~~~~~~~~~~ - Python 3.6+ - Numpy 1.6.1+ - Scikit-learn 0.18.1+ - TensorFlow 1.0.1+ (https://github.com/tensorflow/tensorflow) - Pillow 3.1.2+ - Matplotlib 1.3.1+ Installing ~~~~~~~~~~ Simply install this package with pip3 : :: $ pip3 install CGvsPhoto You can also clone the repository into your favorite directory. :: $ git clone https://github.com/NicoRahm/CGvsPhoto Then, install the package using : :: $ cd CGvsPhoto/ $ pip3 install . To run your first test, there is one more thing to set up: - Create a file named config.ini in your execution directory (the directory containing your scripts) to store the different configurations of your environment. The format is the following : :: [Name of the configuration] dir_ckpt = /path/to/save/trained/weights/ dir_summaries = /path/to/save/summaries dir_visualization = /path/to/save visualizations An example file is given in the examples directory. Database format ~~~~~~~~~~~~~~~ Your database must follow this organization : :: Database/ test/ CGG/ Real/ train/ CGG/ Real/ validation/ CGG/ Real/ You can create it manually or use the function construct\_DB. Some simple examples ~~~~~~~~~~~~~~~~~~~~ To get started, you can run simple scripts from the examples directory. Do not forget to **set up the config.ini file** correctly as described above and to modify the paths to data. - `create\_DB.py`_ will create a formated database for future tests. - `create\_patches\_splicing.py`_ will create a patches database for training single-image classifier and a splicing database to test our models. - `test\_pipeline.py`_ trains a neural network to classify image patches and then evaluate it. - `test\_splicing.py`_ tests a model on spliced images. How to use ---------- This section explains basic uses of this code. We describe a step by step procedure to evaluate our model on your database. Formatting the database ~~~~~~~~~~~~~~~~~~~~~~~ As our code uses a special format for the database, the first thing you need to do is to create a suited structure for the data. You can do this manually but we give a piece of code to do it automatically which may prevent bad surprises… It creates validation, training and testing directories and put a certain number of images per class in it (same number of image for each class) To do so, you just need to have CG and PG images in two different directories and choose another directory to store the formatted database. Then you can just use the *construct\_DB* method : .. code:: python from CGvsPhoto import construct_DB path_CG = '/path/to/CG' path_PG = '/path/to/PG' path_export = 'path/to/export/database' construct_DB(source_real = path_PG, source_CG = path_CG, target_dir = path_export, nb_per_class = 1000, validation_proportion = 0.1, test_proportion = 0.2) You can choose the total number of images per class and the proportion of images to put in each directory. Creating the patches database ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Our implementation computes local patch classification before aggregating the results for full-size images. So, to train the single-image classifier, a patch database must be created. To this end, use the *Database\_loader* class : .. code:: python from CGvsPhoto import Database_loader path_source = 'path/to/source/database' path_export = 'path/to/export/patches' size_patch = 100 data = Database_loader(path_source, image_size = size_patch, only_green=True) # export a patch database data.export_database(path_export, nb_train = 40000, nb_test = 4000, nb_validation = 2000) You can choose the patch size (100x100 pixels in our initial implementation) and the number of patches to put in each directory (with 50/50 distribution between each class). Note that supported image extensions are [“.jpg”,“.gif”,“.png”,“.tga”,“.tif”, “.JPG”, “.jpeg”] Creating a model ~~~~~~~~~~~~~~~~ Now comes the fun part! In order to create your own model, you just have to call the *Model* class. For example : .. code:: python from CGvsPhoto import Model model = Model(database_path 'Database/My_Patch_Data', image_size = 100, config = 'Config1', filters = [32, 64], feature_extractor = 'Stats', batch_size = 50) You can specify the number of output filtered images for each layer with the parameter ``filters`` and the feature extraction scheme (between ‘Hist’ and ‘Stats’). You also need to give the path to the patch database. Warning : The database must contain images with the same image\_size as specified in parameter image\_size. Training a classifier ~~~~~~~~~~~~~~~~~~~~~ Now, to train this model, use the *train* function specifying the number of training/validation/testing batches: .. code:: python model.train(nb_train_batch = 15000, nb_test_batch = 80, nb_validation_batch = 40) This will train a model and save the weights and a bunch of summaries in correspondant directories (you specify the name of the run at the begining of the procedure). You can also load a pre-trained model and continue the training (be careful though to load a model which structure corresponds to the one you are trying to train). At the end of training, the model’s accuracy is evaluated on the patches testing set. Testing ~~~~~~~ Now that you have trained a model, you can load it and test it on full-size images, using the *test\_total\_images* function : .. code:: python test_data_path = '/Database/My_Data/test/' clf.test_total_images(test_data_path = test_data_path, nb_images = 720, decision_rule = 'weighted_vote') Your test directory must contain two sub-directories : CGG and Real. Before testing, the console will ask you the name of the weight file to load. It must be in the default checkpoint directory and you should inidcate the .ckpt file. You can specify the number of images you want to process and the aggregation scheme between ‘weighted\_vote’ and ‘majority\_vote’ (even if ‘weighted\_vote’ is in general more efficient). Authors ------- **Nicolas Rahmouni** - `NicoRahm`_ **Vincent Nozick** .. _NicoRahm: https://github.com/NicoRahm .. _state of the art method: http://ieeexplore.ieee.org/abstract/document/6115849/ .. _create\_DB.py: examples/create_DB.py .. _create\_patches\_splicing.py: examples/create_patches_splicing.py .. _test\_pipeline.py: examples/test_pipeline.py .. _test\_splicing.py: examples/test_splicing.py


نحوه نصب


نصب پکیج whl CGvsPhoto-0.0.3:

    pip install CGvsPhoto-0.0.3.whl


نصب پکیج tar.gz CGvsPhoto-0.0.3:

    pip install CGvsPhoto-0.0.3.tar.gz