معرفی شرکت ها


BullETS-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

BullETS is a Python package designed to help with the development of algorithmic trading strategies.
ویژگی مقدار
سیستم عامل -
نام فایل BullETS-0.1.1
نام BullETS
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده AlgoÉTS
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/AlgoETS/BullETS
آدرس اینترنتی https://pypi.org/project/BullETS/
مجوز Apache 2.0
# BullETS ![GitHub Workflow Status (branch)](https://img.shields.io/github/workflow/status/AlgoETS/BullETS/Build/main?label=Checks%20%28main%29) BullETS is a Python library designed to help with the development of algorithmic trading strategies. ## Upcoming features - Retrieve stock data - Trading portfolio management - Backtesting framework ## Installation This section will assume you have **Python** installed, if not, you can download & install it from [here](https://www.python.org/downloads/). We strongly recommend using a [virtual environment](https://docs.python.org/3/library/venv.html) to keep BullETS and its dependencies from interfering with your system installs. ### Initializing and running a virtual environment Windows: ```shell # Initializing a virtual environment in the ./venv directory py -3 -m venv venv # Activating the virtual environment venv\Scripts\activate.bat ``` Mac OS & Linux: ```shell # Initializing a virtual environment in the ./venv directory python3 -m venv bot-env # Activating the virtual environment (Mac OS & Linux) source bot-env/bin/activate ``` ### Using BullETS to develop a strategy 1. Register an account on the [FinancialModelingPrep website](https://financialmodelingprep.com/developer) and retrieve your API key 2. Create a new folder, initialize and activate a virtual environment inside (see above) 3. Install [BullETS](https://pypi.org/project/BullETS/) from PyPI ```shell pip install BullETS ``` 4. Code your own strategy ```python from bullets.strategy import Strategy, Resolution from bullets.runner import Runner from bullets.data_source.data_source_fmp import FmpDataSource from datetime import datetime # Extend the default strategy from BullETS class MyStrategy(Strategy): # You can access the `portfolio` and the `data_source` variables to retrieve information for your strategy # You are also free to add your own data sources here and use them # Redefine this function to perform a task when the strategy starts def on_start(self): pass # Redefine this function to perform a task on each resolution def on_resolution(self): self.portfolio.market_order("AAPL", 5) # Redefine this function to perform a task at the end of the strategy def on_finish(self): pass # Initialize your new strategy if __name__ == '__main__': resolution = Resolution.DAILY # Define your resolution (DAILY, HOURLY or MINUTE) start_time = datetime(2019, 3, 5) # Define your strategy start time end_time = datetime(2019, 4, 22) # Define your strategy end time data_source = FmpDataSource("Insert your key here", resolution) # Initialize the FMP data source with your API key and resolution strategy = MyStrategy(resolution=resolution, start_time=start_time, end_time=end_time, starting_balance=5000, data_source=data_source) runner = Runner(strategy) # Initialize the runner, which handles the execution of your strategy runner.start() # Start the runner and your strategy ``` This section only covers the basic features to develop a strategy. BullETS has other features, such as slippage, transaction fees, and many others. Stay updated for our upcoming detailed documentation that demonstrates how to use these features. ### Development mode This section covers the installation process if you wish to **contribute** to the library. 1. Clone the repo and go to the library's root directory ``` shell # Clone this repository git clone https://github.com/AlgoETS/BullETS # Move to the BullETS directory cd BullETS ``` 2. Initialize and run a virtual environment (see above) 3. Install BullETS in editable mode (while the virtual environment is activated) ```shell pip install -e . ``` 4. Setup environment variables 1. Make a copy of the `.env.sample` file and name it `.env` 2. Replace the required values inside the `.env` file


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl BullETS-0.1.1:

    pip install BullETS-0.1.1.whl


نصب پکیج tar.gz BullETS-0.1.1:

    pip install BullETS-0.1.1.tar.gz