معرفی شرکت ها


BioExp-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Deep Learning model analysis toolbox
ویژگی مقدار
سیستم عامل -
نام فایل BioExp-0.0.4
نام BioExp
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Avinash Kori, Parth Natekar
ایمیل نویسنده koriavinash1@gmail.com, parth@smail.iitm.ac.in
آدرس صفحه اصلی https://github.com/koriavinash1/BioExp
آدرس اینترنتی https://pypi.org/project/BioExp/
مجوز -
# BioExp [![Build Status](https://travis-ci.org/koriavinash1/BioExp.svg?branch=master)](https://travis-ci.org/koriavinash1/BioExp) [![Documentation Status](https://readthedocs.org/projects/bioexp/badge/?version=latest)](https://bioexp.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/BioExp.svg)](https://badge.fury.io/py/BioExp) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) Explaining Deep Learning Models which perform various image processing tasks in the medical images and natural images. # Features - [x] Dissection Analysis - [x] Ablation Analysis - [x] Uncertainity Analysis - [x] Epistemic Uncertainty using Bayesian Dropout - [x] Aleatoric Uncertainty using Test Time Augmentation - [x] Activation Maximization - [x] CAM Analysis - [x] RCT on input and concept space - [x] Concept generation clustering analysis - [x] wts based clustering - [x] feature based clustering - [x] Concept Identification - [x] Dissection based - [x] Flow based - [x] Causal Graph - [x] Inference Methods - [ ] Counterfactuals on Visual Trails - [ ] Counterfactual Generation - [ ] Ante-hoc methods (Meta-Causation) # Citations If you use BioExp, please cite our work: ``` @article{natekar2019demystifying, title={Demystifying Brain Tumour Segmentation Networks: Interpretability and Uncertainty Analysis}, author={Natekar, Parth and Kori, Avinash and Krishnamurthi, Ganapathy}, journal={arXiv preprint arXiv:1909.01498}, year={2019} } ``` # Defined Pipeline ![pipeline](./imgs/pipeline.png) # Installation Running of the explainability pipeline requires a GPU and several deep learning modules. ### Requirements - 'pandas' - 'numpy' - 'scipy==1.6.0' - 'matplotlib' - 'pillow' - 'simpleITK' - 'opencv-python' - 'tensorflow-gpu==1.14' - 'keras' - 'keras-vis' - 'lucid' The following command will install only the dependencies listed above. ``` pip install BioExp ``` # Ablation ## Usage ``` from BioExp.spatial import Ablation A = spatial.Ablation(model = model, weights_pth = weights_path, metric = dice_label_coef, layer_name = layer_name, test_image = test_image, gt = gt, classes = infoclasses, nclasses = 4) df = A.ablate_filter(step = 1) ``` # Dissection ## Usage ``` from BioExp.spatial import Dissector layer_name = 'conv2d_3' infoclasses = {} for i in range(1): infoclasses['class_'+str(i)] = (i,) infoclasses['whole'] = (1,2,3) dissector = Dissector(model=model, layer_name = layer_name) threshold_maps = dissector.get_threshold_maps(dataset_path = data_root_path, save_path = savepath, percentile = 85) dissector.apply_threshold(image, threshold_maps, nfeatures =9, save_path = savepath, ROI = ROI) dissector.quantify_gt_features(image, gt, threshold_maps, nclasses = infoclass, nfeatures = 9, save_path = savepath, save_fmaps = False, ROI = ROI) ``` ## Results ![dissection](./imgs/dissection.png) # GradCAM ## Usage ``` from BioExp.spatial import cam dice = flow.cam(model, img, gt, nclasses = nclasses, save_path = save_path, layer_idx = -1, threshol = 0.5, modifier = 'guided') ``` ## Results ![gradcam](./imgs/gradcam.png) # Activation Maximization ## Usage ``` from BioExp.concept.feature import Feature_Visualizer class Load_Model(Model): model_path = '../../saved_models/model_flair_scaled/model.pb' image_shape = [None, 1, 240, 240] image_value_range = (0, 10) input_name = 'input_1' E = Feature_Visualizer(Load_Model, savepath = '../results/', regularizer_params={'L1':1e-3, 'rotate':8}) a = E.run(layer = 'conv2d_17', class_ = 'None', channel = 95, transforms=True) ``` ##Activation Results ![lucid](./imgs/lucid.png) # Uncertainty ## Usage ``` from BioExp.uncertainty import uncertainty D = uncertainty(test_image) # for aleatoric mean, var = D.aleatoric(model, iterations = 50) # for epistemic mean, var = D.epistemic(model, iterations = 50) # for combined mean, var = D.combined(model, iterations = 50) ``` ## Results ![un](./imgs/uncertainty.png) # Radiomics ## Usage ``` from BioExp.helpers import radfeatures feat_extractor = radfeatures.ExtractRadiomicFeatures(image, mask, save_path = pth) df = feat_extractor.all_features() ``` # Causal Inference Pipeline ![un](./imgs/causal_pipeline.png) # Contact - Avinash Kori (koriavinash1@gmail.com) - Parth Natekar (parth@smail.iitm.ac.in)


نحوه نصب


نصب پکیج whl BioExp-0.0.4:

    pip install BioExp-0.0.4.whl


نصب پکیج tar.gz BioExp-0.0.4:

    pip install BioExp-0.0.4.tar.gz