معرفی شرکت ها


BicycleDataProcessor-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Processes the data collected from the instrumented bicycle.
ویژگی مقدار
سیستم عامل -
نام فایل BicycleDataProcessor-0.1.0
نام BicycleDataProcessor
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jason Keith Moore
ایمیل نویسنده moorepants@gmail.com
آدرس صفحه اصلی http://github.com/moorepants/BicycleDataProcessor
آدرس اینترنتی https://pypi.org/project/BicycleDataProcessor/
مجوز LICENSE.txt
============= DataProcessor ============= Description =========== This program is setup to process the raw data signals collected from the Davis Instrumented Bicycle's data acquisition system (i.e. the output of BicycleDAQ_). See [Moore2012]_ for details of the system and experiments. .. _BicycleDAQ: https://github.com/moorepants/BicycleDAQ License ======= `BSD 2-Clause License`_, see ``LICENSE.txt``. .. _BSD 2-Clause License: http://opensource.org/licenses/BSD-2-Clause Citation ======== If you make use of this data we kindly request that you cite our work, either [Moore2012]_, the software DOI, and/or other relevant references. Dependencies ============ - `Python 2.7`_ - `NumPy >= 1.6.1`_ - `SciPy >= 0.9.0`_ - `Matplotlib >= 1.1.1`_ - `PyTables >= 2.1.2 and < 3.0.0`_ - `BicycleParameters >= 0.2.0`_ - `DynamicistToolKit >= 0.3.4`_ .. _Python 2.7: http://www.python.org .. _NumPy >= 1.6.1: http://numpy.scipy.org .. _SciPy >= 0.9.0: http://www.scipy.org .. _Matplotlib >= 1.1.1: http://matplotlib.sourceforge.net .. _PyTables >= 2.1.2 and < 3.0.0: http://www.pytables.org .. _BicycleParameters >= 0.2.0: http://pypi.python.org/pypi/BicycleParameters .. _DynamicistToolKit >= 0.3.4: https://pypi.python.org/pypi/DynamicistToolKit Installation ============ For ease of setup we recommend setting up a conda_ environment:: $ conda create -n bdp numpy scipy matplotlib "pytables<3.0" pyyaml $ source activate bdp The remaining dependencies need to be installed with pip:: (bdp)$ pip install "uncertainties>2.0.0" "DynamicistToolKit>=0.3.4" (bdp)$ pip install "yeadon>=1.1.1" "BicycleParameters>=0.2.0" And finally, this package:: (bdp)$ pip install BicycleDataProcessor .. _conda: http://conda.pydata.org/ Usage ===== Load the prebuilt database file ------------------------------- The simplest way to get started with the data is to download the database file from:: $ wget http://files.figshare.com/1710608/instrumented_bicycle_raw_data_h5.tar.bz2 $ tar -jxvf instrumented_bicycle_raw_data_h5.tar.bz2 And also the bicycle parameter data:: $ wget http://files.figshare.com/1710525/bicycle_parameters.tar.gz $ tar -zxvf bicycle_parameters.tar.gz $ rm bicycle_parameters.tar.gz In your working directory, create a ``bdp-defaults.cfg`` and change ``pathToDatabase`` and ``pathToParameters`` to point to the downloaded and unzipped database file and the ``bicycle-parameters`` data directory, respectively. See the ``example-bdp-defaults.cfg`` for reference. This file follows the standard Python configuration file format. Interact with the data ---------------------- Open a Python command prompt and import the module:: >>> import bicycledataprocessor as bdp First load the database:: >>> dataset = bdp.DataSet() Now load a run:: >>> run = bdp.Run('00105', dataset) Check to make sure the data was properly time synchronized:: >>> run.verify_time_sync() The graph that appears shows the mostly downward acceleration signals from the two accelerometers. These signals are used to synchronize the NI USB-2008 and the VN-100 data. If these do not match, then the synchronization algorithm didn't not work and the data may be unusable. The run has a lot of data associated with it. Firstly, you can print a subset of the meta data with:: >>> print(run) The complete meta data is stored in a dictionary:: >>> run.metadata The raw data for each sensor is stored in a dictionary and can be accessed by:: >>> run.rawSignals The data for each sensor with calibration scaling can be accessed by:: >>> run.calibratedSignals The data for each sensor after truncation based on the time synchronization can be accessed with:: >>> run.truncatedSignals The data for each computed signal is also stored in a dictionary:: >>> run.computedSignals The data for each task signal is also stored in a dictionary:: >>> run.taskSignals The ``taskSignals`` can be plotted:: >>> run.taskSignals.keys() # see a list of options >>> run.plot('SteerAngle', 'RollAngle', 'PullForce') Export the computed signals as a mat file with:: >>> run.export('mat') Build the HDF5 file from raw data --------------------------------- The second option would be to build the database with the raw data from BicycleDAQ_. BicycleDAQ stores the raw data from trials and calibrations as Matlab mat files. Then use this module to create the database and fill it with the data. The raw trial data can downloaded as so:: $ wget -O raw-trial-data.zip http://downloads.figshare.com/article/public/1164632 $ unzip -d raw-trial-data raw-trial-data.zip $ rm raw-trial-data.zip The raw calibration files:: $ wget -O raw-calibration-data.zip http://downloads.figshare.com/article/public/1164630 $ unzip -d raw-calibration-data raw-calibration-data.zip $ rm raw-calibration-data.zip And the additional corrupt trial file:: $ wget -O data-corruption.csv http://files.figshare.com/1696860/data_corruption.csv Make sure your ``bdp-defaults.cfg`` paths point to the correct directories for the run mat files (``pathToRunMat``), calibration mat files (``pathToCalibMat``), the corrupt data file (``data-corruption.csv``). Optionally the paths can be set as arguments to ``DataSet()``. Now create an empty database file in the current directory (or to the path specified in ``bdp-defaults.cfg`` if you've done that).:: $ python >>> import bicycledataprocessor as bdp >>> dataset = bdp.DataSet() >>> dataset.create_database() Now, fill the database with the data.:: >>> dataset.fill_all_tables() The will take a little time to populate the database. Warnings ======== - The roll angle is not guaranteed to be calibrated in some of the early pavilion runs. Caution should be used. - The first set of pavilion runs with Luke and Charlie are mostly corrupt, beware. The corruption column in the ``runTable`` specifies which runs are corrupt. - The yaw angle and lateral deviation values depend on integrating the yaw rate. This seems to work for runs that have signals centered around zero, but may be wrong for others. (There are plans to fix this for all runs.) Grant Information ================= This material is partially based upon work supported by the National Science Foundation under Grant No. 0928339. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. References ========== .. [Moore2012] Moore, J. K. Human Control of a Bicycle. University of California, Davis. 2012. Release Notes ============= 0.1.0 ----- - Initial PyPi release.


نحوه نصب


نصب پکیج whl BicycleDataProcessor-0.1.0:

    pip install BicycleDataProcessor-0.1.0.whl


نصب پکیج tar.gz BicycleDataProcessor-0.1.0:

    pip install BicycleDataProcessor-0.1.0.tar.gz