معرفی شرکت ها


BEATAALU-0.13.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This package contains several methods for calculating Conditional Average Treatment Effects
ویژگی مقدار
سیستم عامل -
نام فایل BEATAALU-0.13.1
نام BEATAALU
نسخه کتابخانه 0.13.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Microsoft Corporation
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/Microsoft/EconML
آدرس اینترنتی https://pypi.org/project/BEATAALU/
مجوز MIT
[![Build Status](https://dev.azure.com/ms/EconML/_apis/build/status/Microsoft.EconML?branchName=main)](https://dev.azure.com/ms/EconML/_build/latest?definitionId=49&branchName=main) [![PyPI version](https://img.shields.io/pypi/v/econml.svg)](https://pypi.org/project/econml/) [![PyPI wheel](https://img.shields.io/pypi/wheel/econml.svg)](https://pypi.org/project/econml/) [![Supported Python versions](https://img.shields.io/pypi/pyversions/econml.svg)](https://pypi.org/project/econml/) <h1><img src="doc/econml-logo-icon.png" width="80px" align="left" style="margin-right: 10px;"> EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation</h1> **EconML** is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the [ALICE project](https://www.microsoft.com/en-us/research/project/alice/) at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML: * Implement recent techniques in the literature at the intersection of econometrics and machine learning * Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals * Use a unified API * Build on standard Python packages for Machine Learning and Data Analysis One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) `T` on an outcome variable `Y`, controlling for a set of features `X, W` and how does that effect vary as a function of `X`. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in `X, W` that simultaneously has an effect on both `T` and `Y`), while others assume access to an instrument `Z` (i.e. an observed variable `Z` that has an effect on the treatment `T` but no direct effect on the outcome `Y`). Most methods provide confidence intervals and inference results. For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/. For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/ <details> <summary><strong><em>Table of Contents</em></strong></summary> - [News](#news) - [Getting Started](#getting-started) - [Installation](#installation) - [Usage Examples](#usage-examples) - [Estimation Methods](#estimation-methods) - [Interpretability](#interpretability) - [Causal Model Selection and Cross-Validation](#causal-model-selection-and-cross-validation) - [Inference](#inference) - [Policy Learning](#policy-learning) - [For Developers](#for-developers) - [Running the tests](#running-the-tests) - [Generating the documentation](#generating-the-documentation) - [Blogs and Publications](#blogs-and-publications) - [Citation](#citation) - [Contributing and Feedback](#contributing-and-feedback) - [References](#references) </details> # News **June 17, 2022:** Release v0.13.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.13.1) <details><summary>Previous releases</summary> **January 31, 2022:** Release v0.13.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.13.0) **August 13, 2021:** Release v0.12.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0) **August 5, 2021:** Release v0.12.0b6, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b6) **August 3, 2021:** Release v0.12.0b5, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b5) **July 9, 2021:** Release v0.12.0b4, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b4) **June 25, 2021:** Release v0.12.0b3, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b3) **June 18, 2021:** Release v0.12.0b2, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b2) **June 7, 2021:** Release v0.12.0b1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b1) **May 18, 2021:** Release v0.11.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.11.1) **May 8, 2021:** Release v0.11.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.11.0) **March 22, 2021:** Release v0.10.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.10.0) **March 11, 2021:** Release v0.9.2, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.9.2) **March 3, 2021:** Release v0.9.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.9.1) **February 20, 2021:** Release v0.9.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.9.0) **January 20, 2021:** Release v0.9.0b1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.9.0b1) **November 20, 2020:** Release v0.8.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.8.1) **November 18, 2020:** Release v0.8.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.8.0) **September 4, 2020:** Release v0.8.0b1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.8.0b1) **March 6, 2020:** Release v0.7.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.7.0) **February 18, 2020:** Release v0.7.0b1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.7.0b1) **January 10, 2020:** Release v0.6.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.6.1) **December 6, 2019:** Release v0.6, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.6) **November 21, 2019:** Release v0.5, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.5). **June 3, 2019:** Release v0.4, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.4). **May 3, 2019:** Release v0.3, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.3). **April 10, 2019:** Release v0.2, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.2). **March 6, 2019:** Release v0.1, welcome to have a try and provide feedback. </details> # Getting Started ## Installation Install the latest release from [PyPI](https://pypi.org/project/econml/): ``` pip install econml ``` To install from source, see [For Developers](#for-developers) section below. ## Usage Examples ### Estimation Methods <details> <summary>Double Machine Learning (aka RLearner) (click to expand)</summary> * Linear final stage ```Python from econml.dml import LinearDML from sklearn.linear_model import LassoCV from econml.inference import BootstrapInference est = LinearDML(model_y=LassoCV(), model_t=LassoCV()) ### Estimate with OLS confidence intervals est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ### Estimate with bootstrap confidence intervals est.fit(Y, T, X=X, W=W, inference='bootstrap') # with default bootstrap parameters est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100)) # or customized lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals ``` * Sparse linear final stage ```Python from econml.dml import SparseLinearDML from sklearn.linear_model import LassoCV est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV()) est.fit(Y, T, X=X, W=W) # X -> high dimensional features treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso ``` * Generic Machine Learning last stage ```Python from econml.dml import NonParamDML from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier est = NonParamDML(model_y=RandomForestRegressor(), model_t=RandomForestClassifier(), model_final=RandomForestRegressor(), discrete_treatment=True) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) ``` </details> <details> <summary>Dynamic Double Machine Learning (click to expand)</summary> ```Python from econml.dynamic.dml import DynamicDML # Use defaults est = DynamicDML() # Or specify hyperparameters est = DynamicDML(model_y=LassoCV(cv=3), model_t=LassoCV(cv=3), cv=3) est.fit(Y, T, X=X, W=None, groups=groups, inference="auto") # Effects treatment_effects = est.effect(X_test) # Confidence intervals lb, ub = est.effect_interval(X_test, alpha=0.05) ``` </details> <details> <summary>Causal Forests (click to expand)</summary> ```Python from econml.dml import CausalForestDML from sklearn.linear_model import LassoCV # Use defaults est = CausalForestDML() # Or specify hyperparameters est = CausalForestDML(criterion='het', n_estimators=500, min_samples_leaf=10, max_depth=10, max_samples=0.5, discrete_treatment=False, model_t=LassoCV(), model_y=LassoCV()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) # Confidence intervals via Bootstrap-of-Little-Bags for forests lb, ub = est.effect_interval(X_test, alpha=0.05) ``` </details> <details> <summary>Orthogonal Random Forests (click to expand)</summary> ```Python from econml.orf import DMLOrthoForest, DROrthoForest from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV # Use defaults est = DMLOrthoForest() est = DROrthoForest() # Or specify hyperparameters est = DMLOrthoForest(n_trees=500, min_leaf_size=10, max_depth=10, subsample_ratio=0.7, lambda_reg=0.01, discrete_treatment=False, model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01), model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3)) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) # Confidence intervals via Bootstrap-of-Little-Bags for forests lb, ub = est.effect_interval(X_test, alpha=0.05) ``` </details> <details> <summary>Meta-Learners (click to expand)</summary> * XLearner ```Python from econml.metalearners import XLearner from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor est = XLearner(models=GradientBoostingRegressor(), propensity_model=GradientBoostingClassifier(), cate_models=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test])) # Fit with bootstrap confidence interval construction enabled est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap') treatment_effects = est.effect(np.hstack([X_test, W_test])) lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs ``` * SLearner ```Python from econml.metalearners import SLearner from sklearn.ensemble import GradientBoostingRegressor est = SLearner(overall_model=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test])) ``` * TLearner ```Python from econml.metalearners import TLearner from sklearn.ensemble import GradientBoostingRegressor est = TLearner(models=GradientBoostingRegressor()) est.fit(Y, T, X=np.hstack([X, W])) treatment_effects = est.effect(np.hstack([X_test, W_test])) ``` </details> <details> <summary>Doubly Robust Learners (click to expand) </summary> * Linear final stage ```Python from econml.dr import LinearDRLearner from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = LinearDRLearner(model_propensity=GradientBoostingClassifier(), model_regression=GradientBoostingRegressor()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) ``` * Sparse linear final stage ```Python from econml.dr import SparseLinearDRLearner from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(), model_regression=GradientBoostingRegressor()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) ``` * Nonparametric final stage ```Python from econml.dr import ForestDRLearner from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = ForestDRLearner(model_propensity=GradientBoostingClassifier(), model_regression=GradientBoostingRegressor()) est.fit(Y, T, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) ``` </details> <details> <summary>Double Machine Learning with Instrumental Variables (click to expand)</summary> * Orthogonal instrumental variable learner ```Python from econml.iv.dml import OrthoIV est = OrthoIV(projection=False, discrete_treatment=True, discrete_instrument=True) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ``` * Nonparametric double machine learning with instrumental variable ```Python from econml.iv.dml import NonParamDMLIV est = NonParamDMLIV(projection=False, discrete_treatment=True, discrete_instrument=True) est.fit(Y, T, Z=Z, X=X, W=W) # no analytical confidence interval available treatment_effects = est.effect(X_test) ``` </details> <details> <summary>Doubly Robust Machine Learning with Instrumental Variables (click to expand)</summary> * Linear final stage ```Python from econml.iv.dr import LinearDRIV est = LinearDRIV(discrete_instrument=True, discrete_treatment=True) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ``` * Sparse linear final stage ```Python from econml.iv.dr import SparseLinearDRIV est = SparseLinearDRIV(discrete_instrument=True, discrete_treatment=True) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # Debiased lasso confidence intervals ``` * Nonparametric final stage ```Python from econml.iv.dr import ForestDRIV est = ForestDRIV(discrete_instrument=True, discrete_treatment=True) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) # Confidence intervals via Bootstrap-of-Little-Bags for forests lb, ub = est.effect_interval(X_test, alpha=0.05) ``` * Linear intent-to-treat (discrete instrument, discrete treatment) ```Python from econml.iv.dr import LinearIntentToTreatDRIV from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier est = LinearIntentToTreatDRIV(model_y_xw=GradientBoostingRegressor(), model_t_xwz=GradientBoostingClassifier(), flexible_model_effect=GradientBoostingRegressor()) est.fit(Y, T, Z=Z, X=X, W=W) treatment_effects = est.effect(X_test) lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals ``` </details> <details> <summary>Deep Instrumental Variables (click to expand)</summary> ```Python import keras from econml.iv.nnet import DeepIV treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)), keras.layers.Dropout(0.17), keras.layers.Dense(64, activation='relu'), keras.layers.Dropout(0.17), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.17)]) response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)), keras.layers.Dropout(0.17), keras.layers.Dense(64, activation='relu'), keras.layers.Dropout(0.17), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.17), keras.layers.Dense(1)]) est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks) m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model n_samples=1 # Number of samples used to estimate the response ) est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables treatment_effects = est.effect(X_test) ``` </details> See the <a href="#references">References</a> section for more details. ### Interpretability <details> <summary>Tree Interpreter of the CATE model (click to expand)</summary> ```Python from econml.cate_interpreter import SingleTreeCateInterpreter intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10) # We interpret the CATE model's behavior based on the features used for heterogeneity intrp.interpret(est, X) # Plot the tree plt.figure(figsize=(25, 5)) intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12) plt.show() ``` ![image](notebooks/images/dr_cate_tree.png) </details> <details> <summary>Policy Interpreter of the CATE model (click to expand)</summary> ```Python from econml.cate_interpreter import SingleTreePolicyInterpreter # We find a tree-based treatment policy based on the CATE model intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001) intrp.interpret(est, X, sample_treatment_costs=0.2) # Plot the tree plt.figure(figsize=(25, 5)) intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12) plt.show() ``` ![image](notebooks/images/dr_policy_tree.png) </details> <details> <summary>SHAP values for the CATE model (click to expand)</summary> ```Python import shap from econml.dml import CausalForestDML est = CausalForestDML() est.fit(Y, T, X=X, W=W) shap_values = est.shap_values(X) shap.summary_plot(shap_values['Y0']['T0']) ``` </details> ### Causal Model Selection and Cross-Validation <details> <summary>Causal model selection with the `RScorer` (click to expand)</summary> ```Python from econml.score import RScorer # split data in train-validation X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4) # define list of CATE estimators to select among reg = lambda: RandomForestRegressor(min_samples_leaf=20) clf = lambda: RandomForestClassifier(min_samples_leaf=20) models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True, linear_first_stages=False, cv=3)), ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())), ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())), ('slearner', SLearner(overall_model=reg())), ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(), model_final=reg(), cv=3)), ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(), discrete_treatment=True, cv=3)), ('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=LassoCV(cv=3, fit_intercept=False), discrete_treatment=True, featurizer=PolynomialFeatures(degree=3), linear_first_stages=False, cv=3)) ] # fit cate models on train data models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models] # score cate models on validation data scorer = RScorer(model_y=reg(), model_t=clf(), discrete_treatment=True, cv=3, mc_iters=2, mc_agg='median') scorer.fit(Y_val, T_val, X=X_val) rscore = [scorer.score(mdl) for _, mdl in models] # select the best model mdl, _ = scorer.best_model([mdl for _, mdl in models]) # create weighted ensemble model based on score performance mdl, _ = scorer.ensemble([mdl for _, mdl in models]) ``` </details> <details> <summary>First Stage Model Selection (click to expand)</summary> First stage models can be selected either by passing in cross-validated models (e.g. `sklearn.linear_model.LassoCV`) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages. ```Python from econml.dml import LinearDML from sklearn import clone from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV cv_model = GridSearchCV( estimator=RandomForestRegressor(), param_grid={ "max_depth": [3, None], "n_estimators": (10, 30, 50, 100, 200), "max_features": (2, 4, 6), }, cv=5, ) # First stage model selection within EconML # This is more direct, but computationally and statistically less efficient est = LinearDML(model_y=cv_model, model_t=cv_model) # First stage model selection ouside of EconML # This is the most efficient, but requires boilerplate code model_t = clone(cv_model).fit(W, T).best_estimator_ model_y = clone(cv_model).fit(W, Y).best_estimator_ est = LinearDML(model_y=model_t, model_t=model_y) ``` </details> ### Inference Whenever inference is enabled, then one can get a more structure `InferenceResults` object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a `summary()` method is also enabled. For instance: ```Python from econml.dml import LinearDML # Use defaults est = LinearDML() est.fit(Y, T, X=X, W=W) # Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i] est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3) # Get the population summary for the entire sample X est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001) # Get the parameter inference summary for the final model est.summary() ``` <details><summary>Example Output (click to expand)</summary> ```Python # Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i] est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3) ``` ![image](notebooks/images/summary_frame.png) ```Python # Get the population summary for the entire sample X est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001) ``` ![image](notebooks/images/population_summary.png) ```Python # Get the parameter inference summary for the final model est.summary() ``` ![image](notebooks/images/summary.png) </details> ### Policy Learning You can also perform direct policy learning from observational data, using the doubly robust method for offline policy learning. These methods directly predict a recommended treatment, without internally fitting an explicit model of the conditional average treatment effect. <details> <summary>Doubly Robust Policy Learning (click to expand)</summary> ```Python from econml.policy import DRPolicyTree, DRPolicyForest from sklearn.ensemble import RandomForestRegressor # fit a single binary decision tree policy policy = DRPolicyTree(max_depth=1, min_impurity_decrease=0.01, honest=True) policy.fit(y, T, X=X, W=W) # predict the recommended treatment recommended_T = policy.predict(X) # plot the binary decision tree plt.figure(figsize=(10,5)) policy.plot() # get feature importances importances = policy.feature_importances_ # fit a binary decision forest policy = DRPolicyForest(max_depth=1, min_impurity_decrease=0.01, honest=True) policy.fit(y, T, X=X, W=W) # predict the recommended treatment recommended_T = policy.predict(X) # plot the first tree in the ensemble plt.figure(figsize=(10,5)) policy.plot(0) # get feature importances importances = policy.feature_importances_ ``` ![image](images/policy_tree.png) </details> To see more complex examples, go to the [notebooks](https://github.com/Microsoft/EconML/tree/main/notebooks) section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML [documentation](https://econml.azurewebsites.net/). # For Developers You can get started by cloning this repository. We use [setuptools](https://setuptools.readthedocs.io/en/latest/index.html) for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with `pip install setuptools --upgrade`. Then from your local copy of the repository you can run `pip install -e .` to get started (but depending on what you're doing you might want to install with extras instead, like `pip install -e .[plt]` if you want to use matplotlib integration, or you can use `pip install -e .[all]` to include all extras). ## Running the tests This project uses [pytest](https://docs.pytest.org/) for testing. To run tests locally after installing the package, you can use `pip install pytest-runner` followed by `python setup.py pytest`. We have added pytest marks to some tests to make it easier to run a subset, and you can set the PYTEST_ADDOPTS environment variable to take advantage of this. For instance, you can set it to `-m "not (notebook or automl)"` to skip notebook and automl tests that have some additional dependencies. ## Generating the documentation This project's documentation is generated via [Sphinx](https://www.sphinx-doc.org/en/main/index.html). Note that we use [graphviz](https://graphviz.org/)'s `dot` application to produce some of the images in our documentation, so you should make sure that `dot` is installed and in your path. To generate a local copy of the documentation from a clone of this repository, just run `python setup.py build_sphinx -W -E -a`, which will build the documentation and place it under the `build/sphinx/html` path. The reStructuredText files that make up the documentation are stored in the [docs directory](https://github.com/Microsoft/EconML/tree/main/doc); module documentation is automatically generated by the Sphinx build process. # Blogs and Publications * June 2019: [Treatment Effects with Instruments paper](https://arxiv.org/pdf/1905.10176.pdf) * May 2019: [Open Data Science Conference Workshop](https://odsc.com/speakers/machine-learning-estimation-of-heterogeneous-treatment-effect-the-microsoft-econml-library/) * 2018: [Orthogonal Random Forests paper](http://proceedings.mlr.press/v97/oprescu19a.html) * 2017: [DeepIV paper](http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf) # Citation If you use EconML in your research, please cite us as follows: Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis. **EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation.** https://github.com/microsoft/EconML, 2019. Version 0.x. BibTex: ``` @misc{econml, author={Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis}, title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}}, howpublished={https://github.com/microsoft/EconML}, note={Version 0.x}, year={2019} } ``` # Contributing and Feedback This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com. When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments. # References Athey, Susan, and Stefan Wager. **Policy learning with observational data.** Econometrica 89.1 (2021): 133-161. X Nie, S Wager. **Quasi-Oracle Estimation of Heterogeneous Treatment Effects.** [*Biometrika*](https://doi.org/10.1093/biomet/asaa076), 2020 V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. **Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments.** [*Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS)*](https://arxiv.org/abs/1905.10176), 2019 **(Spotlight Presentation)** D. Foster, V. Syrgkanis. **Orthogonal Statistical Learning.** [*Proceedings of the 32nd Annual Conference on Learning Theory (COLT)*](https://arxiv.org/pdf/1901.09036.pdf), 2019 **(Best Paper Award)** M. Oprescu, V. Syrgkanis and Z. S. Wu. **Orthogonal Random Forest for Causal Inference.** [*Proceedings of the 36th International Conference on Machine Learning (ICML)*](http://proceedings.mlr.press/v97/oprescu19a.html), 2019. S. Künzel, J. Sekhon, J. Bickel and B. Yu. **Metalearners for estimating heterogeneous treatment effects using machine learning.** [*Proceedings of the national academy of sciences, 116(10), 4156-4165*](https://www.pnas.org/content/116/10/4156), 2019. S. Athey, J. Tibshirani, S. Wager. **Generalized random forests.** [*Annals of Statistics, 47, no. 2, 1148--1178*](https://projecteuclid.org/euclid.aos/1547197251), 2019. V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. **Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models.** [*Arxiv preprint arxiv:1806.04823*](https://arxiv.org/abs/1806.04823), 2018. S. Wager, S. Athey. **Estimation and Inference of Heterogeneous Treatment Effects using Random Forests.** [*Journal of the American Statistical Association, 113:523, 1228-1242*](https://www.tandfonline.com/doi/citedby/10.1080/01621459.2017.1319839), 2018. Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. **Deep IV: A flexible approach for counterfactual prediction.** [*Proceedings of the 34th International Conference on Machine Learning, ICML'17*](http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf), 2017. V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. **Double Machine Learning for Treatment and Causal Parameters.** [*ArXiv preprint arXiv:1608.00060*](https://arxiv.org/abs/1608.00060), 2016. Dudik, M., Erhan, D., Langford, J., & Li, L. **Doubly robust policy evaluation and optimization.** Statistical Science, 29(4), 485-511, 2014.


نیازمندی

مقدار نام
- numpy
>1.4.0 scipy
<1.2,>0.22.0 scikit-learn
- sparse
>=0.13.0 joblib
>=0.10 statsmodels
- pandas
<0.41.0,>=0.38.1 shap
- lightgbm
- azure-cli
<2.4 keras
<2.3,>1.10 tensorflow
<4 protobuf
<3.6.0 matplotlib
<0.9 dowhy
- azure-cli
<0.9 dowhy
- graphviz
<3.6.0 matplotlib
<4 protobuf
<2.4 keras
<2.3,>1.10 tensorflow


نحوه نصب


نصب پکیج whl BEATAALU-0.13.1:

    pip install BEATAALU-0.13.1.whl


نصب پکیج tar.gz BEATAALU-0.13.1:

    pip install BEATAALU-0.13.1.tar.gz