[![PypI Versions](https://img.shields.io/pypi/v/autoquant)](https://pypi.org/project/autoquant/#history)
![PyPI - Downloads](https://img.shields.io/pypi/dm/AutoQuant?label=PyPI)
[![Python Versions](https://img.shields.io/pypi/pyversions/pyqlib.svg?logo=python&logoColor=white)](https://pypi.org/project/pyqlib/#files)
[![Platform](https://img.shields.io/badge/platform-linux%20%7C%20windows%20%7C%20macos-lightgrey)](https://pypi.org/project/autoquant/#files)
# AutoQuant
AutoQuant is an out-of-the-box quantitative investment platform.
It contains the full ML pipeline of data processing, strategy building(includes AI & traditionals), back-testing, and covers the entire chain of quantitative investment: alpha seeking, risk modeling, portfolio optimization, and order execution.
With AutoQuant, users can easily try ideas to create better Quant investment strategies.
- [AutoQuant](#autoquant)
- [Quick Start](#quick-start)
- [Installation](#installation)
- [Data Preparation](#data-preparation)
- [Backtest](#backtest)
- [Advanced Topics](#advanced-topics)
- [Market](#market)
- [Metrics](#metrics)
- [Exclusive Metrics](#exclusive-metrics)
- [TA-Lib Metrics](#ta-lib-metrics)
- [Price Provider](#price-provider)
- [Financial Statement Provider](#financial-statement-provider)
- [Contribution Guide](#contribution-guide)
- [Test](#test)
- [Test all](#test-all)
- [Test specified test](#test-specified-test)
- [Development](#development)
- [Generate Requirements](#generate-requirements)
# Quick Start
## Installation
```shell
pip install --upgrade autoquant
```
## Data Preparation
```python
from autoquant.collector import Collector
from autoquant import Market
from datetime import date
collector = Collector.default()
data = collector.daily_prices(
market=Market.SZ,
code='002594',
start=date(2021, 11, 1),
end=date(2021, 11, 5)
)
data = collector.quarter_statement(
market=Market.SH,
code='601318',
quarter=date(2021, 9, 30)
)
```
## Backtest
```python
from autoquant.collector import Collector
from autoquant.workflow import Workflow
from autoquant.broker import Broker
from autoquant import Market
from datetime import date
from autoquant.workflow import Workflow
from autoquant.strategy import MA_CrossOver
class SmaCross(MA_CrossOver):
params = dict(fast=5, slow=20)
collector = Collector.default()
broker = Broker.default(kick_start=100000, commission=0.01)
data = collector.daily_prices(market=Market.SZ, code='002594', start=date(2020, 1, 1), end=date(2021, 11, 1))
w = Workflow().with_broker(broker).with_strategy(SmaCross).backtest(data)
w.visualize()
```
# Advanced Topics
## Market
AutoQuant support Shanghai, Shenzhen, HongKong and US markets now.
Use Market Enum in codes:
```
from autoquant import Market
Market.SZ
Market.SH
Market.HK
Market.US
```
## Metrics
### Exclusive Metrics
- Gross Rate Of Return
- CAGR(Compound Annual Growth Rate)
### TA-Lib Metrics
All the metrics in TA-Lib are available in AutoQuant.
For Example, if you were using the metrics of TA-Lib like this:
```
from talib import SMA
close = numpy.random.random(100)
output = MOM(close, timeperiod=5)
```
You can simply change the import sentence to use the metrics in AutoQuant. The codes would be:
```
from AutoQuant import SMA
close = numpy.random.random(100)
output = MOM(close, timeperiod=5)
```
## Price Provider
- BaostockProvider
- TushareProvider
## Financial Statement Provider
- SnowballProvider
# Contribution Guide
## Test
### Test all
```
PYTHONPATH=./ pytest
```
### Test specified test
```
PYTHONPATH=./ pytest tests/<YOUR_DISIRE_FILE>.py -k "<YOUR_DISIRE_TEST_CASE>" -s
```
## Development
### Generate Requirements
```
pipreqs ./ --encoding=utf8 --force
```