معرفی شرکت ها


AutoEMA-0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Automated Experimental Modal Analysis using Bayesian Optimization
ویژگی مقدار
سیستم عامل -
نام فایل AutoEMA-0.0
نام AutoEMA
نسخه کتابخانه 0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Leopold Beck
ایمیل نویسنده l.beck@tum.de
آدرس صفحه اصلی https://github.com/leo-beck/AutoEMA
آدرس اینترنتی https://pypi.org/project/AutoEMA/
مجوز -
# Automation of Experimental Modal Analysis Using Bayesian Optimization (AutoEMA) [DOWNLOAD THE PAPER](https://www.mdpi.com/2076-3417/13/2/949/pdf?version=1673514238) Implementation of the paper "Automation of Experimental Modal Analysis Using Bayesian Optimization". For further information, please check the publication. Cite as: ``` @Article{ellinger2023autoema, AUTHOR = {Ellinger, Johannes and Beck, Leopold and Benker, Maximilian and Hartl, Roman and Zaeh, Michael F.}, TITLE = {Automation of Experimental Modal Analysis Using Bayesian Optimization}, JOURNAL = {Applied Sciences}, VOLUME = {13}, YEAR = {2023}, NUMBER = {2}, ARTICLE-NUMBER = {949}, URL = {https://www.mdpi.com/2076-3417/13/2/949}, ISSN = {2076-3417}, ABSTRACT = {The dynamic characterization of structures by means of modal parameters offers many valuable insights into the vibrational behavior of these structures. However, modal parameter estimation has traditionally required expert knowledge and cumbersome manual effort such as, for example, the selection of poles from a stabilization diagram. Automated approaches which replace the user inputs with a set of rules depending on the input data set have been developed to address this shortcoming. This paper presents an alternative approach based on Bayesian optimization. This way, the possible solution space for the modal parameter estimation is kept as widely open as possible while ensuring a high accuracy of the final modal model. The proposed approach was validated on both a synthetic test data set and experimental modal analysis data of a machine tool. Furthermore, it was benchmarked against a similar tool from a well-known numerical computation software application.}, DOI = {10.3390/app13020949} } ``` # Installation Pip is recommended to install this package. See [this](https://pip.pypa.io/en/stable/installation/) for more information. ``` pip install autoema ``` # Quick start Import the package and load the example: ```python from AutoEMA import AutoEMA as ae ``` Initializing the OptimizationModel (OptModel) and optimize it: ```python frf, f = ae.load_example() model = ae.OptModel(frf=frf, f_axis=f) model.optimize(n_init=2, n_iter=2) # Do more iterations on real data ``` | iter | target | dist | err_ceta | err_fn | max_ceta | max_norm | min_poles | n_max | ------------------------------------------------------------------------------------------------------------- |  1  |  0.7799  |  1.901  |  0.158  |  0.001011 |  0.2302  |  0.2027  |  0.2369  |  71.18  | |  2  |  0.7799  |  1.644  |  0.1095  |  0.05434  |  0.2419  |  0.5797  |  0.2818  |  112.7  | |  3  |  0.7799  |  2.281  |  0.09488  |  0.03839  |  0.2495  |  0.6356  |  0.5874  |  72.3  | |  4  |  0.7799  |  0.5249  |  0.1351  |  0.01548  |  0.2752  |  0.1158  |  0.2957  |  66.13  | ============================================================================================================= Visualize the result by plotting the stability diagram: ```python _ = model.plot_stability_diagram() ``` ![png](README_files/README_8_0.png) Visualize the damping ratios: ```python model.plot_damping_ratios() ``` ![png](README_files/README_10_0.png) Print the results of the optimized modal analysis: ```python print(model) ``` Model order: 22 FRAC: 100.0% Natural frequencies: ['11.2', '33.3', '53.4', '78.4', '96.9', '118.4', '154.6', '167.6', '176.3', '199.4', '233.0', '244.5', '270.3', '284.7', '290.7', '325.3', '338.9', '368.2', '372.1', '377.8', '391.8', '395.4'] Damping ratios: ['0.145', '0.051', '0.035', '0.027', '0.025', '0.023', '0.023', '0.023', '0.024', '0.024', '0.026', '0.027', '0.028', '0.029', '0.029', '0.032', '0.032', '0.034', '0.035', '0.035', '0.036', '0.036'] Get the modal parameters: ```python reconstructed_frf, freq_axis, nat_freqs, damp_ratios, mode_shapes = model.get_results() FRAC = model.get_frac() ``` Have a look at the optimized parameter: ```python optimized_params = model.params print(optimized_params) ``` {'n_max': 71, 'err_fn': 0.0010113231069171437, 'err_ceta': 0.15804867401632372, 'min_ceta': 0, 'max_ceta': 0.23023325726318397, 'dist': 1.9012792169292663, 'min_poles': 0.23693543790751914, 'max_norm': 0.20272912357197914} Using the same optimized parameters for another modal analysis without optimizing again: ```python bmodel = ae.BaseModel(frf=frf, f_axis=f, params=optimized_params) bmodel.run() print(bmodel) ``` Model order: 22 FRAC: 100.0% Natural frequencies: ['11.2', '33.3', '53.4', '78.4', '96.9', '118.4', '154.6', '167.6', '176.3', '199.4', '233.0', '244.5', '270.3', '284.7', '290.7', '325.3', '338.9', '368.2', '372.1', '377.8', '391.8', '395.4'] Damping ratios: ['0.145', '0.051', '0.035', '0.027', '0.025', '0.023', '0.023', '0.023', '0.024', '0.024', '0.026', '0.027', '0.028', '0.029', '0.029', '0.032', '0.032', '0.034', '0.035', '0.035', '0.036', '0.036'] ## Advanced Play around with the regularization parameter when optimizing the model. An increasing regularization parameter leads to a lower model order. ```python model = ae.OptModel(frf=frf, f_axis=f, reg=0.1, show_progress=False) model.optimize(n_init=10, n_iter=10) print(model) ``` Model order: 20 FRAC: 100.0% Natural frequencies: ['11.2', '33.3', '53.4', '78.4', '96.9', '118.4', '154.6', '167.6', '176.3', '199.4', '233.0', '244.5', '270.3', '284.7', '290.7', '325.3', '338.9', '370.2', '377.8', '393.7'] Damping ratios: ['0.145', '0.051', '0.035', '0.027', '0.025', '0.023', '0.023', '0.023', '0.024', '0.024', '0.026', '0.027', '0.028', '0.029', '0.029', '0.032', '0.032', '0.034', '0.035', '0.036']


زبان مورد نیاز

مقدار نام
>=3.7, <4 Python


نحوه نصب


نصب پکیج whl AutoEMA-0.0:

    pip install AutoEMA-0.0.whl


نصب پکیج tar.gz AutoEMA-0.0:

    pip install AutoEMA-0.0.tar.gz