معرفی شرکت ها


Auto-Research-1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Geberate scientific survey with just a query
ویژگی مقدار
سیستم عامل -
نام فایل Auto-Research-1.0
نام Auto-Research
نسخه کتابخانه 1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sidharth Pal
ایمیل نویسنده sidharth.pal1992@gmail.com
آدرس صفحه اصلی https://github.com/sidphbot/Auto-Research
آدرس اینترنتی https://pypi.org/project/Auto-Research/
مجوز -
# Auto-Research ##### A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting artifacts from a single research query. Requires: - python 3.7 or above - poppler-utils - list of requirements in requirements.txt - 8GB disk space - 13GB CUDA(GPU) memory - for a survey of 100 searched papers(max_search) and 25 selected papers(num_papers) #### Steps to run (pip coming soon): ``` apt install -y poppler-utils libpoppler-cpp-dev git clone https://github.com/sidphbot/Auto-Research.git cd Auto-Research/ pip install -r requirements.txt python Surveyor.py [options] <your_research_query> ``` #### Artifacts generated (zipped): - Detailed survey draft paper as txt file - A curated list of top 25+ papers as pdfs and txts - Images extracted from above papers as jpegs, bmps etc - Heading/Section wise highlights extracted from above papers as a re-usable pure python joblib dump - Tables extracted from papers(optional) - Corpus of metadata highlights/text of top 100 papers as a re-usable pure python joblib dump ## Example run #1 - python utility ``` python src/Surveyor.py 'multi-task representation learning' ``` ## Example run #2 - python class ``` from Surveyor import Surveyor mysurveyor = Surveyor() mysurveyor.survey('quantum entanglement') ``` ## Access/Modify defaults: - inside code ``` from Surveyor import DEFAULTS from pprint import pprint pprint(DEFAULTS) ``` or, - Modify static config file - `defaults.py` or, - At runtime (utility) ``` python src/Surveyor.py --help ``` ``` usage: Surveyor.py [-h] [--max_search max_metadata_papers] [--num_papers max_num_papers] [--pdf_dir pdf_dir] [--txt_dir txt_dir] [--img_dir img_dir] [--tab_dir tab_dir] [--dump_dir dump_dir] [--models_dir save_models_dir] [--title_model_name title_model_name] [--ex_summ_model_name extractive_summ_model_name] [--ledmodel_name ledmodel_name] [--embedder_name sentence_embedder_name] [--nlp_name spacy_model_name] [--similarity_nlp_name similarity_nlp_name] [--kw_model_name kw_model_name] [--refresh_models refresh_models] [--high_gpu high_gpu] query_string Generate a survey just from a query !! positional arguments: query_string your research query/keywords optional arguments: -h, --help show this help message and exit --max_search max_metadata_papers maximium number of papers to gaze at - defaults to 100 --num_papers max_num_papers maximium number of papers to download and analyse - defaults to 25 --pdf_dir pdf_dir pdf paper storage directory - defaults to arxiv_data/tarpdfs/ --txt_dir txt_dir text-converted paper storage directory - defaults to arxiv_data/fulltext/ --img_dir img_dir image storage directory - defaults to arxiv_data/images/ --tab_dir tab_dir tables storage directory - defaults to arxiv_data/tables/ --dump_dir dump_dir all_output_dir - defaults to arxiv_dumps/ --models_dir save_models_dir directory to save models (> 5GB) - defaults to saved_models/ --title_model_name title_model_name title model name/tag in hugging-face, defaults to 'Callidior/bert2bert-base-arxiv-titlegen' --ex_summ_model_name extractive_summ_model_name extractive summary model name/tag in hugging-face, defaults to 'allenai/scibert_scivocab_uncased' --ledmodel_name ledmodel_name led model(for abstractive summary) name/tag in hugging-face, defaults to 'allenai/led- large-16384-arxiv' --embedder_name sentence_embedder_name sentence embedder name/tag in hugging-face, defaults to 'paraphrase-MiniLM-L6-v2' --nlp_name spacy_model_name spacy model name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to 'en_core_sci_scibert' --similarity_nlp_name similarity_nlp_name spacy downstream model(for similarity) name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to 'en_core_sci_lg' --kw_model_name kw_model_name keyword extraction model name/tag in hugging-face, defaults to 'distilbert-base-nli-mean-tokens' --refresh_models refresh_models Refresh model downloads with given names (needs atleast one model name param above), defaults to False --high_gpu high_gpu High GPU usage permitted, defaults to False ``` - At runtime (code) > during surveyor object initialization with `surveyor_obj = Surveyor()` - `pdf_dir`: String, pdf paper storage directory - defaults to `arxiv_data/tarpdfs/` - `txt_dir`: String, text-converted paper storage directory - defaults to `arxiv_data/fulltext/` - `img_dir`: String, image image storage directory - defaults to `arxiv_data/images/` - `tab_dir`: String, tables storage directory - defaults to `arxiv_data/tables/` - `dump_dir`: String, all_output_dir - defaults to `arxiv_dumps/` - `models_dir`: String, directory to save to huge models, defaults to `saved_models/` - `title_model_name`: String, title model name/tag in hugging-face, defaults to `Callidior/bert2bert-base-arxiv-titlegen` - `ex_summ_model_name`: String, extractive summary model name/tag in hugging-face, defaults to `allenai/scibert_scivocab_uncased` - `ledmodel_name`: String, led model(for abstractive summary) name/tag in hugging-face, defaults to `allenai/led-large-16384-arxiv` - `embedder_name`: String, sentence embedder name/tag in hugging-face, defaults to `paraphrase-MiniLM-L6-v2` - `nlp_name`: String, spacy model name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_scibert` - `similarity_nlp_name`: String, spacy downstream trained model(for similarity) name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_lg` - `kw_model_name`: String, keyword extraction model name/tag in hugging-face, defaults to `distilbert-base-nli-mean-tokens` - `high_gpu`: Bool, High GPU usage permitted, defaults to `False` - `refresh_models`: Bool, Refresh model downloads with given names (needs atleast one model name param above), defaults to False > during survey generation with `surveyor_obj.survey(query="my_research_query")` - `max_search`: int maximium number of papers to gaze at - defaults to `100` - `num_papers`: int maximium number of papers to download and analyse - defaults to `25`


نیازمندی

مقدار نام
- pip
==1.9.118 boto3
==2.20.0 requests
==11.0.0 unicodedata2
- pdfminer
- sentence-transformers
- pdftotext
- arxiv
- arxiv2bib
- scholarly
==1.18.14 PyMuPDF
- Pillow
- tabula-py
- sentencepiece
- keybert
- spacy[all]
- scispacy
- amrlib
- transformers
- neuralcoref
- en-core-sci-scibert
- en-core-sci-lg
- bert-extractive-summarizer


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl Auto-Research-1.0:

    pip install Auto-Research-1.0.whl


نصب پکیج tar.gz Auto-Research-1.0:

    pip install Auto-Research-1.0.tar.gz