معرفی شرکت ها


Analyze-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Analyze is a python library that provides comprehensive statistical analysis of a dataframe in 5 lines of code. It creates significant insight for data scientists, analysts and machine learning engineers, enabling quick understanding of a dataset.
ویژگی مقدار
سیستم عامل -
نام فایل Analyze-1.0.1
نام Analyze
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Henry Uwakwe
ایمیل نویسنده Henry.uwakxy@gmail.com
آدرس صفحه اصلی https://github.com/Chaboddunamis/analyze
آدرس اینترنتی https://pypi.org/project/Analyze/
مجوز -
## Analyze --- Analyze is a python module that provides comprehensive statistical analysis of a dataframe in 5 lines of code. It creates significant insight for data scientists, analysts and machine learning engineers, enabling quick understanding of a dataset.. --- ### Installation #### Install the package ```bash pip install Analyze ``` --- #### Import the package into your code ```python from Analyze import analyze, get_dist ``` --- #### Read your dataset into a variable and make it a dataframe ```python data = pd.read_csv('file.csv') # Use the appropriate file extension ``` --- #### Create an instance of the analyze class ```python Datavalue = analyze(data) ``` --- #### Explore the comprehensive statistical value of your dataset using the analyse method. ```python Datavalue.analyze() ``` --- #### Sample Output ```python ................................................ These are the categorical features in your dataset: Name Sex \ 0 Braund, Mr. Owen Harris male 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 2 Heikkinen, Miss. Laina female 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 4 Allen, Mr. William Henry male 5 Moran, Mr. James male 6 McCarthy, Mr. Timothy J male 7 Palsson, Master. Gosta Leonard male 8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 9 Nasser, Mrs. Nicholas (Adele Achem) female 10 Sandstrom, Miss. Marguerite Rut female 11 Bonnell, Miss. Elizabeth female 12 Saundercock, Mr. William Henry male 13 Andersson, Mr. Anders Johan male 14 Vestrom, Miss. Hulda Amanda Adolfina female 15 Hewlett, Mrs. (Mary D Kingcome) female 16 Rice, Master. Eugene male 17 Williams, Mr. Charles Eugene male 18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 19 Masselmani, Mrs. Fatima female Ticket Cabin Embarked 0 A/5 21171 NaN S 1 PC 17599 C85 C 2 STON/O2. 3101282 NaN S 3 113803 C123 S 4 373450 NaN S 5 330877 NaN Q 6 17463 E46 S 7 349909 NaN S 8 347742 NaN S 9 237736 NaN C 10 PP 9549 G6 S 11 113783 C103 S 12 A/5. 2151 NaN S 13 347082 NaN S 14 350406 NaN S 15 248706 NaN S 16 382652 NaN Q 17 244373 NaN S 18 345763 NaN S 19 2649 NaN C ................................................ The 10th percentile values for each column in the dataset are: PassengerId 90.00 Survived 0.00 Pclass 1.00 Age 14.00 SibSp 0.00 Parch 0.00 Fare 7.55 Name: 0.1, dtype: float64 ................................................ The median values for each column of your dataset without missing values are: PassengerId 457.0 Survived 1.0 Pclass 1.0 Age 36.0 SibSp 0.0 Parch 0.0 Fare 57.0 dtype: float64 ................................................ The interquartile ranges of your dataset columns is: PassengerId 445.0000 Survived 1.0000 Pclass 1.0000 Age 17.8750 SibSp 1.0000 Parch 0.0000 Fare 23.0896 dtype: float64 ................................................ The coefficients of variation of your dataset columns without missing values are: PassengerId 56.618895 Survived 109.330348 Pclass 36.083963 Age 63.499659 SibSp 137.349175 Parch 217.198066 Fare 76.676637 dtype: float64 ------------------------------------ ................................................ These are the numerical features in your dataset: PassengerId Survived Pclass Age SibSp Parch Fare 0 1 0 3 22.0 1 0 7.2500 1 2 1 1 38.0 1 0 71.2833 2 3 1 3 26.0 0 0 7.9250 3 4 1 1 35.0 1 0 53.1000 4 5 0 3 35.0 0 0 8.0500 5 6 0 3 NaN 0 0 8.4583 6 7 0 1 54.0 0 0 51.8625 7 8 0 3 2.0 3 1 21.0750 8 9 1 3 27.0 0 2 11.1333 9 10 1 2 14.0 1 0 30.0708 10 11 1 3 4.0 1 1 16.7000 11 12 1 1 58.0 0 0 26.5500 12 13 0 3 20.0 0 0 8.0500 13 14 0 3 39.0 1 5 31.2750 14 15 0 3 14.0 0 0 7.8542 15 16 1 2 55.0 0 0 16.0000 16 17 0 3 2.0 4 1 29.1250 17 18 1 2 NaN 0 0 13.0000 18 19 0 3 31.0 1 0 18.0000 19 20 1 3 NaN 0 0 7.2250 ------------------------------------ ................................................ The skew of your dataset is: credit.policy -1.539621 int.rate 0.164420 installment 0.912522 log.annual.inc 0.028668 dti 0.023941 fico 0.471260 days.with.cr.line 1.155748 revol.bal 11.161058 revol.util 0.059985 inq.last.6mths 3.584151 delinq.2yrs 6.061793 pub.rec 5.126434 not.fully.paid 1.854592 dtype: float64 ------------------------------------ ................................................ The mean values for each column of your dataset are: PassengerId 446.000000 Survived 0.383838 Pclass 2.308642 Age 29.699118 SibSp 0.523008 Parch 0.381594 Fare 32.204208 dtype: float64 ------------------------------------ ................................................ The kurtosis of your dataset is: PassengerId -1.200000 Survived -1.775005 Pclass -1.280015 Age 0.178274 SibSp 17.880420 Parch 9.778125 Fare 33.398141 dtype: float64 ------------------------------------ Distributions listed by Betterment of fit for int.rate: ............................................ Distribution chi_square 4 invgauss 1.029833 6 gamma 1.343415 8 lognorm 1.445072 1 norm 1.458848 3 beta 1.755474 5 uniform 2.043826 10 triang 5.287520 7 expon 14.766634 0 weibull_min 37.608865 2 weibull_max 74.688672 9 pearson3 398.094255 ------------------------------------ Generating report... <scipy.stats._continuous_distns.weibull_min_gen object at 0x11e0699a0> (0.44201093944372993, 1.9999999999999996, 6.268594297720819) <scipy.stats._continuous_distns.norm_gen object at 0x11dd94a30> (28.0, 17.2490408940528) <scipy.stats._continuous_distns.weibull_max_gen object at 0x11e069d00> (0.2488410231665656, 58.000000000000014, 1.5915689505857427) <scipy.stats._continuous_distns.beta_gen object at 0x11e046400> (1.0527932282858297, 0.8439361636930744, -7.839143943009921, 65.83914394300993) <scipy.stats._continuous_distns.invgauss_gen object at 0x11e0951c0> (0.03838006670625667, -62.95941618248101, 2367.692288500255) <scipy.stats._continuous_distns.uniform_gen object at 0x11e0f53d0> (2.0, 56.0) <scipy.stats._continuous_distns.gamma_gen object at 0x11e07cd90> (54.156927130881755, -98.49677304019752, 2.334748847288054) <scipy.stats._continuous_distns.expon_gen object at 0x11e05c460> (2.0, 26.0) <scipy.stats._continuous_distns.lognorm_gen object at 0x11e0b13d0> (4.3245955568716274, 1.9999999876441796, 1.595318052251119) <scipy.stats._continuous_distns.pearson3_gen object at 0x11e0cd8b0> (0.4767375399624638, 28.000022387906775, 17.488900591625978) <scipy.stats._continuous_distns.triang_gen object at 0x11e0e1a00> (0.9999999999942933, -16.926163961990795, 74.92616396492964) ------------------------------------ ................................................ The variance values of your dataset are: PassengerId 66231.000000 Survived 0.236772 Pclass 0.699015 Age 211.019125 SibSp 1.216043 Parch 0.649728 Fare 2469.436846 dtype: float64 ------------------------------------ ``` --- #### Maintainers: [Henry Uwakwe](https://www.linkedin.com/in/ikechukwu-henry-uwakwe-6916a5b6/)


نیازمندی

مقدار نام
- pandas
- pandas-profiling
- numpy
- scipy


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl Analyze-1.0.1:

    pip install Analyze-1.0.1.whl


نصب پکیج tar.gz Analyze-1.0.1:

    pip install Analyze-1.0.1.tar.gz